General Principles of Software

Validation:; Final Guidance for

Industry and FDA Staff
BAFRAE R FE A R B
ANVFIFDAN R B & 55N

Document issued on & A7 H#A: January 11, 2002

This document supersedes the draft document, ""General Principles of Software
Validation, Version 1.1, dated June 9, 1997.

R ZETRIESR “1997486 A 9H ML IR R UE K Z A 7B 7

-— —=
//e,;H 1 =

U.S. Department Of Health and Human Services Food and Drug Administration
Center for Devices and Radiological Health Center for Biologics Evaluation and Research

Preface
S

Public Comment AAVFE (BER/HE)

Comments and suggestions may be submitted at any time for Agency consideration to Dockets
Management Branch, Division of Management Systems and Policy, Office of Human Resources and
Management Services, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305),
Rockville, MD, 20852. When submitting comments, please refer to the exact title of this guidance
document. Comments may not be acted upon by the Agency until the document is next revised or updated.

For questions regarding the use or interpretation of this guidance which involve the Center for Devices and
Radiological Health (CDRH), contact John F. Murray at (301) 594-4659 or email jfm@-cdrh.fda.gov

For questions regarding the use or interpretation of this guidance which involve the Center for Biologics
Evaluation and Research (CBER) contact Jerome Davis at (301) 827-6220 or email davis@cber.fda.gov.

Q.

Additional Copies #ishiE™

CDRH Additional copies are available from the Internet at:
www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM085281.htm. You
may also send an e-mail request to dsmica@fda.hhs.gov to receive an electronic copy of the guidance or send
a fax request to 301-847-8149 to receive a hard copy. Please use the document number (938) to identify the
guidance you are requesting.

CBER Additional copies are available from the Internet at: http://www.fda.gov/cber/guidelines.htm,
bywriting to CBER, Office of Communication, Training, and Manufacturers' Assistance (HFM40),
1401 Rockville Pike, Rockville, Maryland 20852-1448, or by telephone request at 1800-835-5709 or
301-827-1800. (M%)

Table of Contents
H *

SECTION 1. PURPOSE &5 1 B3 H T oottt s sttt sss s senasse st ssenaessssansnens 4
SECTION 2. SCOPE 5 2 73 TEEEl covooveeeceeee ettt sases s e s sa e sa st ss s s enssssanss s sasssesaees 4
2.1, APPLICABILITY JEFHTEIE .ottt se st s ssessneanes 5

2.2 AUDIENCE 22 AR coeveeeteteeeeeeeeeeteeee e et s e tst s s s ss e et s e s s s et s s e et e s st s s s e s et et s e s s et etat s e s et et s aseet et st s esseses et s s sessteseneseesseananeesns 5

2.3. THE LEAST BURDENSOME APPROACH T fATIH [T J7725 oottt sttt 5

2.4. REGULATORY REQUIREMENTS FOR SOFTWARE VALIDATION ZRAFEGAE IS B BESR Lo 6

2.5. QUALITY SYSTEM REGULATION VS PRE-MARKET SUBMISSIONS Jfi & R FEEFL VS ETTRTFIE o, 7
SECTION 3. CONTEXT FOR SOFTWARE VALIDATION ZRAFEE BT 5 v esesssesesesssssssesesssseens 8
3.1. DEFINITIONS AND TERMINOLOGY FE SUFIZRTE ..ottt sttt ettt ss s et s e essnas 8
3.1.1 Requirements and Specifications JEFIELSRFBRIERIIE ..coovvrveeeeeeeee s 8

3.1.2 Verification and Validation ZATHIATIIEIIEc.eveeeeeeeeeeee et eee e eeee e e seeeeeeeseeeeseessssseeeeaesesesssseesssesseaees 9

3,13 HQ/OQ/PQ ettt ee ettt e ettt et e et s ettt es e ee et en e ee e et enens 10

3.2. SOFTWARE DEVELOPMENT AS PART OF SYSTEM DESIGN XAV U - BKAFTF I v, 11

3.3. SOFTWARE IS DIFFERENT FROM HARDWARE FAFAN A T ..ot 11

3.4. BENEFITS OF SOFTWARE VALIDATION FAFIGAE AR AL covvveveeevieecce ettt 13

3.5 DESIGN REVIEW BT TEET ottt se sttt sttt sttt ettt a sttt en st s s s s ans et ssesananesteeas 13
SECTION 4. PRINCIPLES OF SOFTWARE VALIDATION ZRAFIEAUE FITE oo 14
4.1. REQUIREMENTS TEBITEIR ..ottt sttt sttt ettt s st st es s s ss et st s nass st st ssnsesesssanans 14

4.2. DEFECT PREVENTION SRFETIIIT +.vvveeveeeeeeeceeeteteeeeeee e esae ettt s st s s st sess st ss s e esesssssanassessssassssasanans 14

4.3. TIME AND EFFORT I THIFIZZAR ..ottt en et n et an s enese e e s sneeeenesesnaees 14

4.4, SOFTWARE LIFE CYCLE XA AE AT JEIEIT <ottt eeseen e eeseenenee 15

A.5. PLANS TF BRI oottt ettt et ettt et s et et st e e e e et en et et e e et et et et et et enaeeeneeese e eneeernes 15

4.6. PROCEDURES BRI ..ottt ettt es e s e s st as e e s e s e e s e ss st ssesess s e e s s e e eesesees e s esanssssesesneeesneseenesessanes 15

4.7. SOFTWARE VALIDATION AFTER A CHANGE 25 B JE I RAFIGRAIE vt 15

4.8. VALIDATION COVERAGE TEAIETIFEL v et et seee e ese et e e eeesesse s s e et s eesseseseseaesssesassaseesseeesesseeseeassassesensenes 15

4.9, INDEPENDENCE OF REVIEW JHIZ T B ..ottt ettt ettt s st esetesesesetesetetesesesesesesesenenas 16
4.10. FLEXIBILITY AND RESPONSIBILITY R TERT DT T o oeeevieceeece ettt st 16
SECTION 5. ACTIVITIES AND TASKS JE BT ESS .ottt es s sesssses s sess s ssssss s sssassneanans 17
5.1. SOFTWARE LIFE CYCLE ACTIVITIES IR A A B i B oot eee et e et et e e se st esaesseeeeesseseeseesressensesseseeeeneens 17

5.2. TYPICAL TASKS SUPPORTING VALIDATION 78 (AT S5 R BT IR AE vttt 17
5.2.1. Quality PIanning JHEETT R ..ottt 18

5.2.2. REQUITEMENTS T 3K 1.viiieiceeieieeeeeee ettt ettt ettt ettt ettt sttt e s st et s s st st st st et sa st e s sassetasssesstsssenees 19

5.2.3. DESIZN BT touieiveteiieeetete ettt ettt ettt ettt et s et et et en et s s et tenas 21

5.2.4. CONSLIUCTION OF COINEG ..vviiiteiierieceiee et e ettt e ettt eete e ettt e e tteeebeeesbeeesabeeeessaessaeesbaeesasaeeanteeesseesnbaeesntesensseesnnses 23

5.2.5. Testing by the Software Developer FAFEFF K EHATHTMIE oooovveeee s 25

5.2.6. User Site Testing FH FVEIZMITIoveeeeeee ettt 31

5.2.7. Maintenance and Software Changes ZEF I AEAE Bovcveveeeeeeeeeeeeee e 33
SECTION 6. VALIDATION OF AUTOMATED PROCESS EQUIPMENT AND QUALITY SYSTEM SOFTWARE [zh1k
T R D U E T A8 A T I ZR 0 AL ettt ettt ettt en et ee e e en e 34
6.1. HOW MUCH VALIDATION EVIDENCE IS NEEDED? 75 ZE 2 /DIGAEMKIE cooovveee s 36

6.2. DEFINED USER REQUIREMENTS TE S T T IR oo ettt ettt ettt een e en et na s s s een s s 37

6.3. VALIDATION OF OFF-THE-SHELF SOFTWARE AND AUTOMATED EQUIPMENT J3& it A4 R0 3 B8 44 BB ... 38

General Principles of Software Validation

BAFHIE A — AR

This document is intended to provide guidance. It represents the Agency’s current thinking on this topic.
It does not create or confer any rights for or on any person and does not operate to bind Food and Drug
Administration (FDA) or the public. An alternative approach may be used if such approach satisfies the
requirements of the applicable statutes and regulations.

SECTION 1. PURPOSE %8 1 ¥4 HH

This guidance outlines general validation principles that the Food and Drug Administration (FDA)
considers to be applicable to the validation of medical device software or the validation of software used to
design, develop, or manufacture medical devices. This final guidance document, Version 2.0, supersedes
the draft document, General Principles of Software Validation, Version 1.1, dated June 9, 1997. A5 54
15 7 FDAN TG A TR I7 s BeriE, B T30t IR, BIAE P27 d bk B A A B i 1) — Al e
WEJE

SECTION 2. SCOPE % 2 ¥4 i H

This guidance describes how certain provisions of the medical device Quality System regulation apply to
software and the agency’s current approach to evaluating a software validation system. For example, this
document lists elements that are acceptable to the FDA for the validation of software; however, it does not
list all of the activities and tasks that must, in all instances, be used to comply with the law.

AFE FHRA T BT AT R GUR R R B A an T S BB, B FDATES — MR IR R G
AT 7. Bltn, ASCHIH T FDAX T8RRI 2 o s (B2, JFRFIHAE —VIEOL T it
TEER B BT & S AT 55

The scope of this guidance is somewhat broader than the scope of validation in the strictest definition of that
term. Planning, verification, testing, traceability, configuration management, and many other aspects of good
software engineering discussed in this guidance are important activities that together help to support a final
conclusion that software is validated.

Pk EuF, AR S RN VG SRR a2 Tt BRA . DL GBI, BOEE B OR
TR I R AR BV 22 A U7 T 2 RS S, EATA B TSR N R A AR R C R
WL

This guidance recommends an integration of software life cycle management and risk management activities.
Based on the intended use and the safety risk associated with the software to be developed, the software
developer should determine the specific approach, the combination of techniques to be used, and the level of
effort to be applied. While this guidance does not recommend any specific life cycle model or any specific
technique or method, it does recommend that software validation and verification activities be conducted
throughout the entire software life cycle.

A Fi T VR B A i) S0 BN XURS: i BV S AT M o MRS TR AT AN 5 I A SR A SR R 22
PR, AT IT RN RN E A5 8 U7 i, B Z N EORIA S, LN HZARE .. BAARTE S
HEAFATAT R A S TS X, BT AR e R BTV, (E SO AN R A i Jo) 3 e HEAT R 90 U AN
UNCER

Where the software is developed by someone other than the device manufacturer (e.g., off-the-shelf software)
the software developer may not be directly responsible for compliance with FDA regulations.

A B RN ARSS AR P BT, dn s AR, AT A W REAS B A ST FDATE LAY
ait.

In that case, the party with regulatory responsibility (i.e., the device manufacturer) needs to assess the
adequacy of the off-the-shelf software developer’s activities and determine what additional efforts are needed
to establish that the software is validated for the device manufacturer’s intended use.

FERXFEOL T, ot E M — ﬁ(%%ﬁ%ﬁﬁ)ﬁﬁﬁM&%ﬁ#%#ﬁﬁﬁﬁﬁ%ﬁ%ﬁ,ﬁ%
SE ST 17 it 2 HAM 22 RAE B AT DR I0E R, FFRFS S 7 v B 00 A 4

/

2.1. APPLICABILITY i&Fa
This guidance applies to: A5 S:i& F T
Software used as a component, part, or accessory of a medical device;
FAME—/NEEST 2R — AN BB, BREC AR A
Software that is itself a medical device (e.g., blood establishment software);
A B B — BT AR (i, o e AL D
Software used in the production of a device (e.g., programmable logic controllers in manufacturing
equipment); and
Fe A A T BB (BN, AR R A T SRR R AR) ¢
Software used in implementation of the device manufacturer's quality system (e.g., software that
records and maintains the device history record).
FHAE S0P 3 B R G AT (AN, D sRANGESF S0 07 sl k3R o
This document is based on generally recognized software validation principles and, therefore, can be applied
to any software. For FDA purposes, this guidance applies to any software related to a regulated medical
device, as defined by Section 201(h) of the Federal Food, Drug, and Cosmetic Act (the Act) and by current
FDA software and regulatory policy. This document does not specifically identify which software is or is not

regulated. iEIN, ASCAFREETHARIEREN, Ft, SRR WFDAMES, %1
B 24 i At R 25 201 (h) 25 AN AT FDABF AT & 5 AT IO RIE . AS4R S 18 TR 5 58 il B2 7 28
FHRMIERAT o AR IR BT U B A2 B

2.2. AUDIENCE A#£X
This guidance provides useful information and recommendations to the following individuals:
RIEFN I NI T A I E R E B AT
Persons subject to the medical device Quality System regulation
gy - LR PN
Persons responsible for the design, development, or production of medical device software
B DT EIT ACAAT Bt TR ERAE = N 7
Persons responsible for the design, development, production, or procurement of automated tools used
for the design, development, or manufacture of medical devices or software tools used to implement
the quality system itself
51 B3N LR THRAB IR AP 8RR 5, B 3h TR T B asmka et
PR B, B T ARH TR RSEA S
FDA Investigators
FDA #/EA G
FDA Compliance Officers
FDA &M AZE
FDA Scientific Reviewers
FDA FlE£1FH 57

2.3. THE LEAST BURDENSOME APPROACH 5 &% B 5 ¥%

We believe we should consider the least burdensome approach in all areas of medical device regulation. This
guidance reflects our careful review of the relevant scientific and legal requirements and what we believe is
the least burdensome way for you to comply with those requirements. However, if you believe that an
alternative approach would be less burdensome, please contact us so we can consider your point of view.
You may send your written comments to the contact person listed in the preface to this guidance or to the

CDRH Ombudsman. Comprehensive information on CDRH’s Ombudsman, including ways to contact him,
can be found on the Internet at:

FATNABA TN F& B2 ST SR AT A b (1 B el A 1 T8 o ARTE 3 St 1 SRAT TR AR SR A AR A
BRI AHPPER, DL IBRATA IS FARR AT & B LLZOR 1 i Ty 177 3 ST, AR AR — A
BARRITIA T REE LS, W HEAECR, FATATE T8 ARRAIE T8 E A T #1471 H R HCR
NBZECDRHIJIAE L 5. K TCORHIAEL RZAELE, SRR, TN R

http://www.fda.gov/cdrh/resolvingdisputes/ombudsman.html.

2.4. REGULATORY REQUIREMENTS FOR SOFTWARE VALIDATION #4448 1E 1) 5 B 2L
K

The FDA’s analysis of 3140 medical device recalls conducted between 1992 and 1998 reveals that242 of
them (7.7%) are attributable to software failures. Of those software related recalls, 192 (or79%) were caused
by software defects that were introduced when changes were made to the software after its initial production
and distribution. Software validation and other related good software engineering practices discussed in this
guidance are a principal means of avoiding such defects and resultant recalls.

MFDAXS 1992~19984F [F] A IIF H 3140451 2 77 i bk i) 74 [l A4 1 iR K] [=l B M HY 5 A7 24248 52 BRI RRA- 2%
RCEFEG 19201 5 BUNKH A S IR AT B S, 3 BRI 2R G0 1 IR I & i R 40k
o BAFRAE S AR R RIF A TRIF ARG CRH8 210D 2 ik Gt B e S bl 5 3 30 4 [ml 2
PRI — A E) 7 2

Software validation is a requirement of the Quality System regulation, which was published in the Federal
Register on October 7, 1996 and took effect on June 1, 1997. (See Title 21 Code of Federal Regulations
(CFR) Part 820, and 61 Federal Register (FR) 52602, respectively.) Validation requirements apply to
software used as components in medical devices, to software that is itself a medical device, and to software
used in production of the device or in implementation of the device manufacturer's quality system.
BAFIAE R P E AR RV AR, BI19964F10 7 H ARAEFR GREA) L, JFT199746 H1H 4
RUHERE (43512 WL21CFR820:H 4> AIFR614552602) . Uik 75 >R (1 B F JE A6 F AR BT S 4L 1
YRR AT, A B RIS — AN BT a0 A 72 1 2% P 0 LR A i A 7 7 o i R e P AT B A
Unless specifically exempted in a classification regulation, any medical device software product developed
after June 1, 1997, regardless of its device class, is subject to applicable design control provisions. (See of 21
CFR 820.30.) This requirement includes the completion of current development projects, all new
development projects, and all changes made to existing medical device software. Specific requirements for
validation of device software are found in21 CFR 820.30(g). Other design controls, such as planning, input,
verification, and reviews, are required for medical device software. (See 21 CFR 820.30.) The
corresponding documented results from these activities can provide additional support for a conclusion that
medical device software is validated.

BrAE > B A R R RS S, ATAT19974F6 H L H JE A & I BEIT 24 7= b, ANEHI, RIS
Pl A RIS (2 W21CFREB20.30.) IXANEER AL IHILAT IR &30 H ., B 9 4 00 B S A B il By
A AR B S8 . BT A I SR R R 5 2 W21 CFR 8820.30(g) . HeAtiseit=hl, fnit
R BN WA AR, SR EEIT AR R (121 CFR 820.30) . SR H X EE 5 HAH
TR B 45 AT O BT SRR A 96 R Y 45 1R B B AP SCRF

Any software used to automate any part of the device production process or any part of the quality system
must be validated for its intended use, as required by 21 CFR &20.70(i). This requirement applies to any
software used to automate device design, testing, component acceptance, manufacturing, labeling, packaging,
distribution, complaint handling, or to automate any other aspect of the quality system.

#1121 CFR 820.70(i), F Tl @A™ T2 sl 5t & 2R G R ATART 5 23 B T 3k A 2 ik AT &
WU D&, XIS & 5 U T R, B s dl S sort . Al AR, 2B IR,
R, . SRR R R R GUT AT AR 1) H S ERAE

In addition, computer systems used to create, modify, and maintain electronic records and to manage
electronic signatures are also subject to the validation requirements. (See 21 CFR 811.10(a).) Such computer

http://www.fda.gov/cdrh/resolvingdisputes/ombudsman.html

systems must be validated to ensure accuracy, reliability, consistent intended performance, and the ability to
discern invalid or altered records.

Fiakh, A B R 4E BT il s NS B TR A BT AL R St N AT SR (W, 21 CFR
811.10(a)). XLEIHFHLRGLHIGIUE, LA RAEITE . AIEEVE, MRS WUIERE, R oA 5
W BE

Software for the above applications may be developed in-house or under contract. However, software is
frequently purchased off-the-shelf for a particular intended use. All production and/or quality system
software, even if purchased off-the-shelf, should have documented requirements that fully define its intended
use, and information against which testing results and other evidence can be compared, to show that the
software is validated for its intended use.

IR R AR RE N B EGE RIS TT K . AR, I TRR AT &, RIS . BT AR
PEAE S R R G, BRI I SE R, A AT 5 4 WA L TOUT D Jde R E5K

The use of off-the-shelf software in automated medical devices and in automated manufacturing and quality
system operations is increasing. Off-the-shelf software may have many capabilities, only a few of which are
needed by the device manufacturer. Device manufacturers are responsible for the adequacy of the software
used in their devices, and used to produce devices. When device manufacturers purchase "off-the-shelf"
software, they must ensure that it will perform as intended in their chosen application. For off-the-shelf
software used in manufacturing or in the quality system, additional guidance is included in Section 6.3 of this
document. For device software, additional useful information may be found in FDA’s Guidance for Industry,
FDA Reviewers, and Compliance on Off-The-Shelf Software Use in Medical Devices.

H 3 BT e A E B2 AR e A o B A H 2 B0 o B R n A VF 2 PR RE, (HARIR
AR E PR A @A R T s S A 2 Bl . e I SE 7
BRARIE, AbAT T2 2000 DR IR AR 42 B e T PR R R R 3 AT o R T A 77 BB & R G FH) et B, i
T ARSI TR T W Ta s, HAbhA HEE S 2 WFDAK V5T : FDAZF#H A A,
RT3 W ot BAAF 1 P o

2.5. QUALITY SYSTEM REGULATION VS PRE-MARKET SUBMISSIONS Jfi & & 4tv:#
VS LRI

This document addresses Quality System regulation issues that involve the implementation of software
validation. It provides guidance for the management and control of the software validation process. The
management and control of the software validation process should not be confused with any other validation
requirements, such as process validation for an automated manufacturing process.

AT IR o R G) R LA AT R U B S, T OB I AR A B AR R A T R
RIS RS A BRI) AN R AT A AR SRR SR AR, Bl —A> B 34 i R i 2500k

Device manufacturers may use the same procedures and records for compliance with quality system and
design control requirements, as well as for pre-market submissions to FDA. This document does not cover
any specific safety or efficacy issues related to software validation. Design issues and documentation
requirements for pre-market submissions of regulated software are not addressed by this document. Specific
issues related to safety and efficacy, and the documentation required in pre-market submissions, should be
addressed to the Office of Device Evaluation (ODE), Center for Devices and Radiological Health (CDRH) or
to the Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER). See the
references in Appendix A for applicable FDA guidance documents for pre-market submissions.

s A AT DA A5 o R G R R R AR AT D %, T A7 & BT AT Ag 1Y
Hi§ (FDA) o A AR ST IGUER R0 T A R R 2 4 MR R R . AR SO RGA A il B
LT AR BB TR AN SO R . 5 e A I B RO SRR R R, DA K b T R R R S
f, N5{54CDRHH L JODEJMA % B CBERM MR 78 5 F i Jp A% . FDA LTI HT FH 518 5 50 #F
Z WIHEA.

http://www.fda.gov/cdrh/ode/1252.html
http://www.fda.gov/cdrh/ode/1252.html

SECTION 3. CONTEXT FOR SOFTWARE VALIDATION A48T i35 5

Many people have asked for specific guidance on what FDA expects them to do to ensure compliance with
the Quality System regulation with regard to software validation. Information on software validation
presented in this document is not new. Validation of software, using the principles and tasks listed in
Sections 4 and 5, has been conducted in many segments of the software industry for well over 20 years.

YF2 N OAET KK T FDAFIRH AT ORIE G 5 BB R AR X 10 BB R GEE IR IR TR T o AN SCRERILIY
BAFRAEE BA BN (EFHZE4. 5ER 7041 H AR S A0 55 B B A B AiF L AE B0 7 M V22 4 . H
2024 1,

Due to the great variety of medical devices, processes, and manufacturing facilities, it is not possible to state
in one document all of the specific validation elements that are applicable. However, a general application of
several broad concepts can be used successfully as guidance for software validation. These broad concepts
provide an acceptable framework for building a comprehensive approach to software validation. Additional
specific information is available from many of the references listed in Appendix A.

H T BT A BRORT AR = B 1Y) 22 B, ANATREALE — NS0 T Bk BT A s E e ok . AR, LA
J7 SOREGx A3 FH AT BT AR SRR B0 AIE) 48 o SR8 SCRIME & M i — AN 2 A S e T ik 3R 4 T
—NAHRRZHER . HAh RGBS AT S 2% .

3.1. DEFINITIONS AND TERMINOLOGY 5 S FIARE

Unless defined in the Quality System regulation, or otherwise specified below, all other terms used in this
guidance are as defined in the current edition of the FDA Glossary of Computerized System and Software
Development Terminology.

FRAEDTE RGEA O X B A Y], ARfR T H B I HAtR1EEIAT i FDAF Glossary of
Computerized System and Software Development Terminology - 46 & X .

The medical device Quality System regulation (21 CFR 820.3(k)) defines "establish" to mean "define,
document, and implement." Where it appears in this guidance, the words "establish" and “established” should
be interpreted to have this same meaning.

2T 25 UTT B R G120 (21 CFR 820.3(k)) K "establish™E XA “define, document, and implement” . 7
I B "establish " Fl“established” i 1 B A [A]_F 1) 8L

Some definitions found in the medical device Quality System regulation can be confusing when compared to
commonly used terminology in the software industry. Examples are requirements, specification, verification,
and validation.

2 53 b A S A 38 R TEAH EUERINE, P RE 250 R IT ds bkt B SR Gk A E 1 — e e SUR AR TR
Ho PIINFER. ML Gavl) A LI,

3.1.1 Requirements and Specifications ¥EERFIFRAENTE
While the Quality System regulation states that design input requirements must be documented, and that
specified requirements must be verified, the regulation does not further clarify the distinction between the
terms “requirement” and “specification.” A requirement can be any need or expectation for a system or for
its software. Requirements reflect the stated or implied needs of the customer, and may be market-based,
contractual, or statutory, as well as an organization's internal requirements. There can be many different
kinds of requirements (e.g., design, functional, implementation, interface, performance, or physical
requirements). Software requirements are typically derived from the system requirements for those aspects of
system functionality that have been allocated to software. Software requirements are typically stated in
functional terms and are defined, refined, and updated as a development project progresses. Success in
accurately and completely documenting software requirements is a crucial factor in successful validation of
the resulting software.
S TR R GUE I E D A0E W TN ZOR AR IR EEOK, (HVERUARBE— 20) B R 1
“requirement” F “specification” FIMRAX . Requirement £HXT—/ RS KR AR TER
BRI . Requirements/c it & PR E M EEE B 7R 22, MRlgE 2R THigm, &RMBGEEN, &

BHLANIMBER ., ATReE T2 ARFRPESR (i, Gt Thee. <P, 80, ek
VIR EESR) o BT SR Rk B 20 B BB R GETh RE D7 H B R G oK . B R KOs H LD REARTE
BB, JFBEE — PRI MR EAEAT WA . SRR EE R . BEMSUERAML . S BT A R SRR A K
BAF BRI AE R — DN B R R R

A specification is defined as “a document that states requirements.” (See 21 CFR §820.3(y).) It may refer to
or include drawings, patterns, or other relevant documents and usually indicates the means and the criteria
whereby conformity with the requirement can be checked. There are many different kinds of written
specifications, e.g., system requirements specification, software requirements specification, software design
specification, software test specification, software integration specification, etc. All of these documents
establish “specified requirements” and are design outputs for which various forms of verification are
necessary.

—ANTRMLIE SCN “IE I FRSCHE” (W 21 CFR 820.3(y).). ' A s R, R, oAb
FHOGSCHE, 8RB SR A I 5 SRAH — B il . AAERRIBIFTER, il KGR
LY AT RIL) . AT B ARTE . BAFIAPR . AT S AR S5 55 . T IX SR ST “oR
SEFRR” , BIR &ML ZERAEE Bt

3.1.2 Verification and Validation 34\ F1EGIE

The Quality System regulation is harmonized with 1SO 8402:1994, which treats “verification” and
“validation” as separate and distinct terms. On the other hand, many software engineering journal articles and
textbooks use the terms "verification" and "validation" interchangeably, or in some cases refer to software
"verification, validation, and testing (VV&T)" as if it is a single concept, with no distinction among the three
terms.

R R GE51S0 8402:1994— 3, K “HAIN” A CIRAE” VRS AE X). — D5, T
Z B TR SO R4 TLAE X I 44 18], B0 MR BR 9 EE “ B A al(VV&T)” ,
R — WS, BRI,

Software verification provides objective evidence that the design outputs of a particular phase of the
software development life cycle meet all of the specified requirements for that phase. Software verification
looks for consistency, completeness, and correctness of the software and its supporting documentation, as it
is being developed, and provides support for a subsequent conclusion that software is validated. Software
testing is one of many verification activities intended to confirm that software development output meets its
input requirements. Other verification activities include various static and dynamic analyses, code and
document inspections, walkthroughs, and other techniques.

BAFHIN AT SR AL BOMAIE S , IR B A T 2 i Jo) ST — ANRE IR B) e vt 4w 2 I8 AP B) i
FE iR EITAGERES, AN BAE TSR R HSCHR S il s i — Bk . e maEsitt, JF
NGRS R (BABIERERM) RS PAFR V2GS — A, BN
KA T R N EK . AR BTG S LS S A S s A AR 2 ek A AR A AN
FR

Software validation is a part of the design validation for a finished device, but is not separately defined in
the Quality System regulation. For purposes of this guidance, FDA considers software validation to be
“confirmation by examination and provision of objective evidence that software specifications conform
to user needs and intended uses, and that the particular requirements implemented through software
can be consistently fulfilled.” In practice, software validation activities may occur both during, as well as at
the end of the software development life cycle to ensure that all requirements have been fulfilled. Since
software is usually part of a larger hardware system, the validation of software typically includes evidence
that all software requirements have been implemented correctly and completely and are traceable to system
requirements. A conclusion that software is validated is highly dependent upon comprehensive software
testing, inspections, analyses, and other verification tasks performed at each stage of the software
development life cycle. Testing of device software functionality in a simulated use environment, and user site
testing are typically included as components of an overall design validation program for a software
automated device.

BAFIRAE S — A B f TSR) — 3870, R AR RGUE M B BE . S ARTRE 2
ANHIE, FDAVHBATIRUE R “ i fo &A% ME S e, UESCR AR 7F 6 H - fa R AU A %
I B IX AN E A A SRR SR AT IR A W — AR 200 2 7 o bR b, SR B H IR B AT
KA I IR . RS R B, DL R T A 77 K O seil. A8 & — MO &
G —& 5, BRI UERER, Fra SRR O IR C S, H BRI Ra k. CRIER
PRI S5 VR B 2 AEAR . B2 AT AR T R 2B A R SR AN BEHAT 19 AR A AT 55
BT A B HEAT B a5 IR A Dl e il ik S A P B DKol 5V D9 B S A R A i — > s A 15 - 56
WEFE 7 B A BGER 43

Software verification and validation are difficult because a developer cannot test forever, and it is hard to
know how much evidence is enough. In large measure, software validation is a matter of developing a “level
of confidence” that the device meets all requirements and user expectations for the software automated
functions and features of the device. Measures such as defects found in specifications documents, estimates
of defects remaining, testing coverage, and other techniques are all used to develop an acceptable level of
confidence before shipping the product. The level of confidence, and therefore the level of software
validation, verification, and testing effort needed, will vary depending upon the safety risk (hazard) posed by
the automated functions of the device. Additional guidance regarding safety risk management for software
may be found in Section 4 of FDA’s Guidance for the Content of Pre-market Submissions for Software
Contained in Medical Devices, and in the international standards ISO/IEC 14971-1 and IEC 60601-1-4
referenced in Appendix A.

BN SRR AR R, F— DI RN AARERAT AR, T HARSE &N 2 e 2 78 2 1
IRKHRE b, AR R TR “BAERFEE” WS, BISSRAT &0 B) D se AN S ke v 1) B
AT RAH P U 1 AR SO R A SREETRER Al S DU o S e R S T, A
i RATHT, BRI R — /MM S ER AT B2 hnitE . Bk, XAFFERE, BASIE. MR 20
MR R BE R B T 280 B DR AR R e B (e o HAh 2 2 X H s Fn] 20
FDATES “ Guidance for the Content of Pre-market Submissions for Software Contained in Medical
Devices ” HIZE4#E7r, PAKBHFAS 5]) E Brbr#EISO/IEC 14971-1 and IEC 60601-1-4.

3.1.31Q/0Q/PQ

For many years, both FDA and regulated industry have attempted to understand and define software
validation within the context of process validation terminology. For example, industry documents and other
FDA validation guidance sometimes describe user site software validation in terms of installation
qualification (1Q), operational qualification (OQ) and performance qualification (PQ). Definitions of these
terms and additional information regarding 1Q/OQ/PQ may be found in FDA’s Guideline on General
Principles of Process Validation, dated May 11, 1987, and in FDA’s Glossary of Computerized System and
Software Development Terminology, dated August 1995.

2K, FDARSZ W E (Al 223803 DL Z R M BEE SR B AR AN 5 SR S0AIE . B, Ak SR
fFDALHEFR S AR AHIQ « OQ. PQRHFHIAH 7 A HAFLAE . XL ANE & R HARIQ/OQ/PQIIME
B A2 ILFDAKIB MRS “Guideline on General Principles of Process Validation, dated May 11, 1987,
F1 “Glossary of Computerized System and Software Development Terminology, dated August 1995” .
While 1Q/0OQ/PQ terminology has served its purpose well and is one of many legitimate ways to organize
software validation tasks at the user site, this terminology may not be well understood among many software
professionals, and it is not used elsewhere in this document. However, both FDA personnel and device
manufacturers need to be aware of these differences in terminology as they ask for and provide information
regarding software validation.

BEARIQ/OQ/PQATE CLHAR AT HISEBL &, IHAE N — &3 AR P A A RAETE S, HRWE
BAFEAL N AT BEA K BEAR X LR, 1 HARBAEA ST oAt 7] . (HAVEERE, B3R
P RPAT IS B, FDAN GRS bl AE 7= pe A7) 5 22 2 IR B IR L8R 1) 200

http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/swareval.html
http://www.fda.gov/cdrh/ode/swareval.html
http://www.fda.gov/cdrh/ode/425.pdf
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/cdrh/ode/swareval.html
http://www.fda.gov/cdrh/ode/swareval.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html

3.2. SOFTWARE DEVELOPMENT AS PART OF SYSTEM DESIGN 3% & it-- 3 4FHF K
The decision to implement system functionality using software is one that is typically made during system
design. Software requirements are typically derived from the overall system requirements and design for
those aspects in the system that are to be implemented using software. There are user needs and intended uses
for a finished device, but users typically do not specify whether those requirements are to be met by hardware,
software, or some combination of both. Therefore, software validation must be considered within the context
of the overall design validation for the system.

i AT LB R GeTh R fe R Gt i AR i 50— MRURPER P o« B0 5 SR R B B AR R gt i R AN
FHHAE LI R GBI LE 5 T T o A — A B as il i 1 - /5 RN g, B P 8 H B5oh VR4
Yo e AR . AR B L AL AT IR TR . BRI, B BRAIE I ZBUAE) 2R G B AR BT IRIE Y
Hi N HE.

A documented requirements specification represents the user's needs and intended uses from which the
product is developed. A primary goal of software validation is to then demonstrate that all completed
software products comply with all documented software and system requirements. The correctness and
completeness of both the system requirements and the software requirements should be addressed as part of
the design validation process for the device. Software validation includes confirmation of conformance to all
software specifications and confirmation that all software requirements are traceable to the system
specifications. Confirmation is an important part of the overall design validation to ensure that all aspects of
the medical device conform to user needs and intended uses.

— TR AR T SR w5 SR T 8 o A A San e 1Y) i 22 H B 1k A B AT 1) 78
SRR BAT 77 i 6 A SCIF AT I R G 75 oK o R Gt T SRR A 75 SR R0 R A 0 6 B B e B ik i T
AR R — 7 o AR OIS TIATT & P Y bsiE, iAo R F SR AT IE i 2 KRG A .
BN B ARV IR B — N EEEL 7, B IR BT S0 T 7 AT & T R SR AU i

3.3. SOFTWARE IS DIFFERENT FROM HARDWARE ¥ /44 5] T 544

While software shares many of the same engineering tasks as hardware, it has some very important
differences. For example:
JE AT INAT G R B — R TR S5, (HR AR KA . il

The vast majority of software problems are traceable to errors made during the design and
development process. While the quality of a hardware product is highly dependent on design, development
and manufacture, the quality of a software product is dependent primarily on design and development with a
minimum concern for software manufacture. Software manufacturing consists of reproduction that can be
easily verified. It is not difficult to manufacture thousands of program copies that function exactly the same
as the original; the difficulty comes in getting the original program to meet all specifications.

2K 25 B BT 0 T AR T AT AR I R Y B AR R o TR B A i 0 O v R A 1
T FFARRIAE RS, AB AT i) ot B 32 BRI /D SV E B A P B TR Ao B A P B 45 A 1
HARE G eiN . A= T b7 B RERE i — FEUERRIZ AT IR T B A AN R e s REAE T IR AR 7 457
G bR

One of the most significant features of software is branching, i.e., the ability to execute alternative
series of commands, based on differing inputs. This feature is a major contributing factor for another
characteristic of software — its complexity. Even short programs can be very complex and difficult to fully
understand.

BAF R BN — M ROE 0 SRR, BB T ANE B AT A fr 2 HUBE o IXAMRF o2 A
R PR E TR R R - o A AR 0 37, HE A e 4 P A TR ARG A 5 AR et A B B R R e
6

Typically, testing alone cannot fully verify that software is complete and correct. In addition to
testing, other verification techniques and a structured and documented development process should be
combined to ensure a comprehensive validation approach.

HH, FIAA BE S A TN S AR . B 1IN0, RORE AR AR A SRR — AN S

WA T RO AR AT RS, DU IR — DR S IR IE T 1

Unlike hardware, software is not a physical entity and does not wear out. In fact, software may
improve with age, as latent defects are discovered and removed. However, as software is constantly updated
and changed, such improvements are sometimes countered by new defects introduced into the software
during the change.

SRR, AR AV, WAREMR. FL L, BRI R,
BT DABEE G A IR 2 ik o SR, HERAREE Py dr 22 BB AN AR I, IR 28 uidh A I i 18 AR B it
R 5] NI R o

Unlike some hardware failures, software failures occur without advanced warning. The software’s
branching that allows it to follow differing paths during execution, may hide some latent defects until long
after a software product has been introduced into the marketplace.

S LR SN, R) BB S T . ORI B PR 2y SO B R VR AT
AR ERER AN F AT, W RTRSG R — SRR, B — DR N2 JE AR K — Bt A

Another related characteristic of software is the speed and ease with which it can be changed. This
factor can cause both software and non-software professionals to believe that software problems can be
corrected easily. Combined with a lack of understanding of software, it can lead managers to believe that
tightly controlled engineering is not needed as much for software as it is for hardware. In fact, the opposite is
true. Because of its complexity, the development process for software should be even more tightly
controlled than for hardware, in order to prevent problems that cannot be easily detected later in the
development process.

Ty AR DR A T AR R FE AT (A o X AN R R] 5 L A AN AR AR A SN A]
IRE G I EXTERAFEZ PR, S EUE B A AT R BRI — R R AN TR) A% DA . sk
B RS BOBAT R 2R E, AT AR R I R A A B SRR A, ABH T A AR
AN G KL D)]

Seemingly insignificant changes in software code can create unexpected and very significant
problems elsewhere in the software program. The software development process should be sufficiently well
planned, controlled, and documented to detect and correct unexpected results from software changes.

B RN T6 0 B B A AR AR B8] LR B e 1) Fo At 7= AR AN w] it A A i B
) o AT ARG RE R 78 o0 TH RIS A RIIC SR, DAARINAN 2 IE P R0k) A2 B 45

Given the high demand for software professionals and the highly mobile workforce, the software
personnel who make maintenance changes to software may not have been involved in the original software
development. Therefore, accurate and thorough documentation is essential.

2 J8 B AT SR 0 B TR SR R BN 57 80 70, BT A AR B4R A N A AT REAN S
BRATIAFRIIT RGBS R, AR 4 T S 0 AN AT

Historically, software components have not been as frequently standardized and interchangeable as
hardware components. However, medical device software developers are beginning to use component-based
development tools and techniques. Object-oriented methodologies and the use of off-the-shelf software
components hold promise for faster and less expensive software development. However, component-based
approaches require very careful attention during integration. Prior to integration, time is needed to fully
define and develop reusable software code and to fully understand the behavior of off-the-shelf components.

For these and other reasons, software engineering needs an even greater level of managerial scrutiny
and control than does hardware engineering.

P vs kiR, — BV A REL H brtl, JF R Efe. SR, BRJr 88T kB
IETFAGAE P 2T AR AT A RO o T TA1 0 R ER) 7 R R ol ity B ZALAPF £ I P A BREE AN A7 B 1
TRATRATR . IR0, RSN, ST AR R ZOR I NG AL . (ESRRAT, 7 L [A] 52 43t
SE ST A ml R AEACES I 58 e b BR A pl i 4L BT

XX EAIANR B, B4 TEEE A TREE AT Z &S]

3.4. BENEFITS OF SOFTWARE VALIDATION X {FI8-0F i 23 Ab

Software validation is a critical tool used to assure the quality of device software and software automated
operations. Software validation can increase the usability and reliability of the device, resulting in decreased
failure rates, fewer recalls and corrective actions, less risk to patients and users, and reduced liability to
device manufacturers. Software validation can also reduce long term costs by making it easier and less costly
to reliably modify software and revalidate software changes. Software maintenance can represent a very large
percentage of the total cost of software over its entire life cycle. An established comprehensive software
validation process helps to reduce the long-term cost of software by reducing the cost of validation for each
subsequent release of the software.

BAFIRAE R — ARt TR, A CRIE S AT 1 B A B S AE AT o« A 56 IE B % 15 i 2 B) FT
PEAIRTSENE, DR, AR E B SUEAT S, A AR, PSR E AR A R) B
o BAFIAE AT, BE I SE AN D 43 N ik AT A] S B2 52 00 B A R0 3R SR A

3.5 DESIGN REVIEW i 1FE
Design reviews are documented, comprehensive, and systematic examinations of a design to evaluate the
adequacy of the design requirements, to evaluate the capability of the design to meet these requirements, and
to identify problems. While there may be many informal technical reviews that occur within the development
team during a software project, a formal design review is more structured and includes participation from
others outside the development team. Formal design reviews may reference or include results from other
formal and informal reviews. Design reviews may be conducted separately for the software, after the
software is integrated with the hardware into the system, or both. Design reviews should include examination
of development plans, requirements specifications, design specifications, testing plans and procedures, all
other documents and activities associated with the project, verification results from each stage of the defined
life cycle, and validation results for the overall device.
BV & S 2 M R G wH i i — AN, RO S fa R 78 o0 1, seit 72 i 2 X
BeF R, LR R BEAR— NI BT A B I 2 AR IE SR VR, — AN BBt oF
B NAT RIFIIH L, FRaFERBIAM A N A2 .
IE TR e AT RE 91 B a3 oAb E AR IE PP s 945 R . FERREREMT RGP & EAER, Bl
MRG S MNERSG, A BT SV . PR MR FE R UE R A, @R, &t
b, AT RIFIRR R, A Hofh 550 H A OSSO ANE S, 5 SRR fir i I R BRI A 45
DA R 2 0 s B) SR IR 4 2R
Design review is a primary tool for managing and evaluating development projects. For example, formal
design reviews allow management to confirm that all goals defined in the software validation plan have been
achieved. The Quality System regulation requires that at least one formal design review be conducted during
the device design process. However, it is recommended that multiple design reviews be conducted (e.g., at
the end of each software life cycle activity, in preparation for proceeding to the next activity). Formal design
review is especially important at or near the end of the requirements activity, before major resources have
been committed to specific design solutions. Problems found at this point can be resolved more easily, save
time and money, and reduce the likelihood of missing a critical issue.
BOTH PR 2 B A PR T AT H) — A FE T HE . B, IERW i vF e S VS BN ST S
WETF R H AR O e BT RGUE IR AE Bk s vH IR 2= AT — N IE TP . SR, 4R
BT Z AR (B, EREANRAE s BRG], e TGS o fEEEEIE O RN E
BCTHARR T S LAY, (BT RGBSR BRI AR I IR QU PR JC B2 IR R I o) 4 BN 28
Dy, AR R A, IR R O A U AT R
Answers to some key questions should be documented during formal design reviews. These include:
AR BTV A, BT SR A SR (] R 1Bl 2y, L

Have the appropriate tasks and expected results, outputs, or products been established for each
software life cycle activity?

CLE NN A iy JE TS Bl 308 AT A AT S it ™= o 2

Do the tasks and expected results, outputs, or products of each software life cycle activity:
BEAN AT A i B S0 BN AR5 TN 28 5 L i Y ™

Comply with the requirements of other software life cycle activities in terms of correctness,
completeness, consistency, and accuracy?

R IERRTE . SRRV R AR, 2 7530 R A R A e A BV B B 7R oKk 2
Satisfy the standards, practices, and conventions of that activity?

& I RIS BN RRAE S AN St 5 451 2

Establish a proper basis for initiating tasks for the next software life cycle activity?
T N R B U AT A i A IS B AT 55 S — >l Y FE AL 2

SECTION 4. PRINCIPLES OF SOFTWARE VALIDATION #4-IHE B%
U

This section lists the general principles that should be considered for the validation of software.

ASHR o BIEE T AT IR — R

4.1. REQUIREMENTS EIE R

A documented software requirements specification provides a baseline for both validation and verification.
The software validation process cannot be completed without an established software requirements
specification (Ref: 21 CFR 820.3(z) and (aa) and 820.30(f) and (g)). 14 7 K IN L NI UE ARG 36 24t 7 —
NHEEHELE . AT, WAGETE AR 2 (20121 CFR 820.3(z) and (aa) and 820.30(f) and (g)) -

4.2. DEFECT PREVENTION & i RH

Software quality assurance needs to focus on preventing the introduction of defects into the software
development process and not on trying to “test quality into” the software code after it is written. Software
testing is very limited in its ability to surface all latent defects in software code. For example, the complexity
of most software prevents it from being exhaustively tested. Software testing is a necessary activity.
However, in most cases software testing by itself is not sufficient to establish confidence that the
software is fit for its intended use. In order to establish that confidence, software developers should use a
mixture of methods and techniques to prevent software errors and to detect software errors that do occur. The
“best mix” of methods depends on many factors including the development environment, application, size of
project, language, and risk.

AR RIE R E), DA T R AR 5N BRI, AR R b 56 B 221200 X2
OB R AU ORS00 A 4) o A PR BT A Y AE R B) BE D AT BR AR o il R 2 B A
HREDiING T e R R RIS AT — B EES) . R, EZEUIENT, B AR
AN P& & L TUIE - i, AT RN A N 38 T T VR RS AR B A 5 AR T SR
R IR AR . RS PITNEKBF 2 R R, SIS R BH RN

T 5 AR

4.3. TIME AND EFFORT 8] f12%3R%,

To build a case that the software is validated requires time and effort. Preparation for software validation
should begin early, i.e., during design and development planning and design input. The final conclusion that
the software is validated should be based on evidence collected from planned efforts conducted throughout
the software lifecycle.

B — N BT B0 E 1 22 49 75 B I TR AN 53 B S E O il 26 S LT, o, E Bt AT &t
R SR ANIS o B IGIE Y B 2% 2510 S DA AN A i Ji) 391 mh AT ORI 1 2k P A IR AR
BLfitt o

4.4. SOFTWARE LIFE CYCLE /4= 3

Software validation takes place within the environment of an established software life cycle. The software
life cycle contains software engineering tasks and documentation necessary to support the software validation
effort. In addition, the software life cycle contains specific verification and validation tasks that are
appropriate for the intended use of the software. This guidance does not recommend any particular life cycle
models — only that they should be selected and used for a software development project.

AT IR A AEAE — A C 1) 8 R A o F S RO PR A o SN2 i o) S0 35 B A O AAT 95 AN SCHRF IR
PERAE S L B S8k, IR A i A) B0 R R A S A 3 A A TR FH 3 F) SRR AT:
%

4.5. PLANS it

The software validation process is defined and controlled through the use of a plan. The software validation
plan defines “what” is to be accomplished through the software validation effort. Software validation plans
are a significant quality system tool. Software validation plans specify areas such as scope, approach,
resources, schedules and the types and extent of activities, tasks, and work items.

BRI IR I R A — AT R AT R e AN o A B R s A A B S B e U T A
BATFRAE TR — N EEN R E RS T H . AT IR S a0 S 77 & Ve 7k, B
LA SRS ARSI ARSI H SR AANTE H .

4.6. PROCEDURES #72

The software validation process is executed through the use of procedures. These procedures establish “how”
to conduct the software validation effort. The procedures should identify the specific actions or sequence of
actions that must be taken to complete individual validation activities, tasks, and work items.

PAFIAE AR A AR AT o IX LR G L EREPAT AR IR 2 XA IR LB 7€ PR AT B B 58 ik
PAIGUEE S AR TAETH BAT S o

4.7. SOFTWARE VALIDATION AFTER A CHANGE ZF ¥ 5 K84 30 AIE

Due to the complexity of software, a seemingly small local change may have a significant global system
impact. When any change (even a small change) is made to the software, the validation status of the software
needs to be re-established. Whenever software is changed, a validation analysis should be conducted not
just for validation of the individual change, but also to determine the extent and impact of that change
on the entire software system. Based on this analysis, the software developer should then conduct an
appropriate level of software regression testing to show that unchanged but vulnerable portions of the system
have not been adversely affected. Design controls and appropriate regression testing provide the confidence
that the software is validated after a software change.

H TR E AR, — DBV R AR B sV 2 R R G877 A — AN BRI . SRR (R
il —AN N KA, A B IEIRAS 75 E 4 I AE . BT R RE, BBEAT — AN RE AT
AN T EA B ERIGIE, T HEA T e BN KRG RERENBEREMEM . 5T ik o,
BARTE R A BLARAT — 38 7K AT R 7 i, DARWIR AR B, (B 5 2 B i RS A A 1k 52 5
AHIFEI o VT2 FHE 24 B [0 U3 23 B o R AR B JE B SR A 15 O

4.8. VALIDATION COVERAGE il

Validation coverage should be based on the software’s complexity and safety risk — not on firm size or
resource constraints. The selection of validation activities, tasks, and work items should be commensurate
with the complexity of the software design and the risk associated with the use of the software for the
specified intended use. For lower risk devices, only baseline validation activities may be conducted. As the
risk increases additional validation activities should be added to cover the additional risk. Validation
documentation should be sufficient to demonstrate that all software validation plans and procedures have

been completed successfully.

BGrIE 0 [N 3 T A B B2 A A 2 A XU, T AN A R AR BB PR IR . B EiE B AR5 A AR H
326 96 2 5 SR T DR A e A FH 3 R 5 P DX B B2 2 PR AR L o 0T B KU 145, VR
AT RAEREIE S . B RGN, AONGIETE S AN, DA o5 8 i XU o 98 0E S AN 2 B8 IE
B BT AT B0 BT SR E TR AR RS MG 14 5 ik o

4.9. INDEPENDENCE OF REVIEW L3P

Validation activities should be conducted using the basic quality assurance precept of “independence of
review.” Self-validation is extremely difficult. When possible, an independent evaluation is always better,
especially for higher risk applications. Some firms contract out for a third-party independent verification and
validation, but this solution may not always be feasible. Another approach is to assign internal staff members
that are not involved in a particular design or its implementation, but who have sufficient knowledge to
evaluate the project and conduct the verification and validation activities. Smaller firms may need to be
creative in how tasks are organized and assigned in order to maintain internal independence of review.

SRR I B 1 AT R A SR A B S RN “ A7 3P 7 o B RIGUEA L N HERN . 35 ATRE, — ML
DAL LS ST LG, ARp sl 0 T A A B v UG R SRR P o e 3w A 25 55 = 05 EAT JRSZ B UE FIA A,
HRZIRRTT ZIFATE ST, BIBEARS S — MR RS 5L N A G, H
AATTENA & 0% B PPAl I H AN BAT S8 UE R DS B AR o /N — KU A W] AT R R SEAE — 28 i) @ b3k AT
Q. WHSHRIRA 44155, DL4ES AL PEE

4.10. FLEXIBILITY AND RESPONSIBILITY R &M FTAE
Specific implementation of these software validation principles may be quite different from one application
to another. The device manufacturer has flexibility in choosing how to apply these validation principles, but
retains ultimate responsibility for demonstrating that the software has been validated.
X AR IG I JU)) e R St A — 31 53— AN LR P B AR OR AN [R] o B08 267 B T R 1B R B R
JS2 X SEIGAIEVE N, ABATS A TTAEUE B B A IRIE .
Software is designed, developed, validated, and regulated in a wide spectrum of environments, and for a wide
variety of devices with varying levels of risk. FDA regulated medical device applications include software
that:
AR RAE S FRISATI T, I T A A B S 7K IR S AT 50t TRR . Bk IR . FDAIR
BB AR RN P AR e 4

Is a component, part, or accessory of a medical device; —/NEEIT7 2MAIALA: . BB B 1

Is itself a medical device; or A B & — AN EJFasml: 54

Is used in manufacturing, design and development, or other parts of the quality system.

MTAP . B IR, B E R G AR R
In each environment, software components from many sources may be used to create the application (e.g.,
in-house developed software, off-the-shelf software, contract software, shareware). In addition, software
components come in many different forms (e.g., application software, operating systems, compilers,
debuggers, configuration management tools, and many more). The validation of software in these
environments can be a complex undertaking; therefore, it is appropriate that all of these software
validation principles be considered when designing the software validation process. The resultant
software validation process should be commensurate with the safety risk associated with the system,
device, or process.
A BITHEL, KRB Z BIRRPAT AT T TR R (B, WA R B B
BREAE IEZERMAD oS4, B RMARRGEERN (M AEFSRMg . BIERS%. Wi
FEFF . ASE . MESH TAKTZHAMND o XEIETHRE PRI E — I =15 FIk,
BT AT RAIE I FRR, 2 BT X S A SR SR U . BT R R AR N S RS &
I R A oK B 22 A XU AR R

Software validation activities and tasks may be dispersed, occurring at different locations and being
conducted by different organizations. However, regardless of the distribution of tasks, contractual relations,
source of components, or the development environment, the device manufacturer or specification developer
retains ultimate responsibility for ensuring that the software is validated.

BAFIAEVE B FE S WV 8, HIEAR Ry, FERARALIAT. R, AEAES W5
Fo, GFRA AFRITETTAIAEL, FAE ™ i BURTE € & 26 2847 SR DRI 2 LBk (1 .

SECTION 5. ACTIVITIES AND TASKS ¥EShFI{E %

Software validation is accomplished through a series of activities and tasks that are planned and executed at
various stages of the software development life cycle. These tasks may be one time occurrences or may be
iterated many times, depending on the life cycle model used and the scope of changes made as the software
project progresses.

BRA 9 UE A BB T 5 Az i R SR AN [RT B Bk R ATSRAT (0 — R INE S AESS R SE e I8 55 BT
R BEE R I 2 K, B Rl I 3 A %) 2 i P YIRS) v

5.1. SOFTWARE LIFE CYCLE ACTIVITIES ¥/ 6y BAiE s

This guidance does not recommend the use of any specific software life cycle model. Software developers
should establish a software life cycle model that is appropriate for their product and organization. The
software life cycle model that is selected should cover the software from its birth to its retirement. Activities
in a typical software life cycle model include the following:

AFE T FEA IR VAT AT AT RE IR S0 A i S BB A o AT 3 B S — N3 S At AT T o RH 2 2R) A
A AR o 3 R X MBS BT S PR BB, RO = AR BISE . 2 B A i R B
L

Quality Planning Jii & 11X

System Requirements Definition 487K E X

Detailed Software Requirements Specification 40 144 75 K FZ)

Software Design Specification HC2F i 1HEUAS 156 HH ALY

Construction or Coding 41 % 5k 4w 5

Testing 13K

Installation 223

Operation and Support iZ4T #1537 HF

Maintenance 4k

Retirement B4%

Verification, testing, and other tasks that support software validation occur during each of these activities. A
life cycle model organizes these software development activities in various ways and provides a framework
for monitoring and controlling the software development project. Several software life cycle models (e.g.,
waterfall, spiral, rapid prototyping, incremental development, etc.) are defined in FDA’s Glossary of
Computerized System and Software Development Terminology, dated August 1995. These and many other
life cycle models are described in various references listed in Appendix A.

BN I B F At SRR A B0AIE I AT 55 tH IRAE BF NS Bl o — A i A RS DL 22 b 7 U 2H X e 4
PEIF RSN, FF OIS AT T R I St —HEZE . JUAN B2 a IR (i, VA
IEHERY . PR A, M EARASE) TE19954E8 H FDAH IR “THHNL RS MK R ARE” Fe
o BHAFAR i F H &2 2 X LA A DL R A A= i fi B A 0

5.2. TYPICAL TASKS SUPPORTING VALIDATION L% f{14F 4% %5 Bl B 3IF

For each of the software life cycle activities, there are certain “typical” tasks that support a conclusion that
the software is validated. However, the specific tasks to be performed, their order of performance, and the

http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html

iteration and timing of their performance will be dictated by the specific software life cycle model that is
selected and the safety risk associated with the software application. For very low risk applications, certain
tasks may not be needed at all. However, the software developer should at least consider each of these tasks
and should define and document which tasks are or are not appropriate for their specific application. The
following discussion is generic and is not intended to prescribe any particular software life cycle model or
any particular order in which tasks are to be performed.

PR AT A S B, AR A AR SORSCRF A IRAIE N — iR . AR, AT XA
REPRAE S5, AT TEAAT BONGFE BEARATIIRAT Se ST 18] RIS FRE 52 1) 308 35 (1R I AR R R A A iy o ST 7Y
A5 A R AR G 1 22 4 AR o 3o T ARAR AU AR LR A SEEAE S5 T REARAANT 2. 28110, BRAFIT
R BN ERE—MESS, AT SR MREEAT 550 T A AT B0 B A B P 2 3 24 R B AN 2 Y

5.2.1. Quality Planning R &%l

Design and development planning should culminate in a plan that identifies necessary tasks, procedures for
anomaly reporting and resolution, necessary resources, and management review requirements, including
formal design reviews. A software life cycle model and associated activities should be identified, as well as
those tasks necessary for each software life cycle activity. The plan should include:

BT AT R RN A FR A S AR S5 . S W R AR D R L e BB S — N IE BT PR E
B PRPE AT S0 1) — BRI b o RO AN A AR A R SRR R S OIS B, A RS A A
BT AR LA 55 o TR B -

The specific tasks for each life cycle activity; &AM A42E v J& BTG 3 FRFIRAT 55

Enumeration of important quality factors (e.g., reliability, maintainability, and usability);

HEFERRFRWME (an, 5. S4E T A

Methods and procedures for each task; &I 55 1) 5 V2 AR ;

Task acceptance criteria;

FE 25 B WS HE I 5

Criteria for defining and documenting outputs in terms that will allow evaluation of their

conformance to input requirements;

BRI SORITC SR HA PROVRE U, 1455 i R 0T i N SR B A 6 R B 3R AT 1PAl
Inputs for each task; #IUAE 55 %I 5

Outputs from each task; &} I4T-55 K% H ;

Roles, resources, and responsibilities for each task; &I T45 1Mo, FIEAITT/T;
Risks and assumptions; and XU AR % Al

Documentation of user needs. JH /7 75 R 3044

Management must identify and provide the appropriate software development environment and resources.
(See 21 CFR 820.20(b)(1) and (2).) Typically, each task requires personnel as well as physical resources.
The plan should identify the personnel, the facility and equipment resources for each task, and the role that
risk (hazard) management will play. A configuration management plan should be developed that will guide
and control multiple parallel development activities and ensure proper communications and documentation.
Controls are necessary to ensure positive and correct correspondence among all approved versions of the
specifications documents, source code, object code, and test suites that comprise a software system. The
controls also should ensure accurate identification of, and access to, the currently approved versions.
BRI TR R Y B BT R IR R AT B R (21 CFR 820.20(b)(1) and (2).) . BEAREMEMIZE,
FEAMESS TN AR B G o TR ST B IUT 55 B 7 BN B s et AN B 2 B, AKX (fg)
ERPEMMA O BITR DM EEER], 48 G IEAT T RS S IR DR 24 1115 B A A S A
M. TR ER), LA ORAE BT AVE S AE AR AS . JEACRS . H R AR AN AL 5 — N At R Sl
AR A IR0 T AR R0 B2 o 428) LR RO 2 T R RS) TR 8 R A A P

Procedures should be created for reporting and resolving software anomalies found through validation or
other activities. Management should identify the reports and specify the contents, format, and responsible

organizational elements for each report. Procedures also are necessary for the review and approval of
software development results, including the responsible organizational elements for such reviews and
approvals.

L BIEEANAE , 30 B0 E T B SRR N R A e TR . R R TR AR T R VR U N
1 ARG TSR ZAE R o IR T2 T A 45 SR vF s At 2 A 221, BRI L H A
HLHER TSR R R .
Typical Tasks — Quality Planning 8L AU 4F %%5- 5 &%
° Risk (Hazard) Management Plan X[(f&5) & ¥ it&
° Configuration Management Plan Fit & & P i1
° Software Quality Assurance Plan#i {4 5 & {f-4F 11 &1l
—Software Verification and Validation Plan -3 {436 1E AR A 111
> Verification and Validation Tasks, and Acceptance Criteriad&ilF AR5 K Beschnite
> Schedule and Resource Allocation (for software verification and validation activities) T1%l%
HA TR E O T A B B AE TS 31D
> Reporting Requirementsi 15 %3k
—Formal Design Review Requirements 1F 74 & 1+ 8 ZoR
—Other Technical Review Requirements & 1 AR 187 3k
° Problem Reporting and Resolution Procedures [@4 15 AR v S FE
° Other Support Activities &2 FHiE5h

5.2.2. Requirements 73R
Requirements development includes the identification, analysis, and documentation of information about the
device and its intended use. Areas of special importance include allocation of system functions to
hardware/software, operating conditions, user characteristics, potential hazards, and anticipated tasks. In
addition, the requirements should state clearly the intended use of the software.
it SR R A4 A S LTI R 2545 B S0 20 A Sl s o Rl B B 0 o G R AR A AT) R S8 T
REMCE . BATRAT. H R IBFEETH L IUMTESS . dbh, KNI I e B e U 3
The software requirements specification document should contain a written definition of the software
functions. It is not possible to validate software without predetermined and documented software
requirements. Typical software requirements specify the following:
A TR SRINL ST AT — AN A D Re 5 158 . WA TSR E ARSI 7R ok, AT RES
ITHAERAER . BRI SRR R AT

Al software system inputs; FTH 314 RSN ;

Al software system outputs; T B4 R 45 1% H

Al functions that the software system will perform: 3047 5 1t 2 48 I T A Thfie s

All performance requirements that the software will meet, (e.g., data throughput, reliability, and
timing); KRR A TERERR SR (B, BRIt E, PSRRI (AR

The definition of all external and user interfaces, as well as any internal software-to-system interfaces;
BTG ANERATFE P4 VR L, ALK AR R % 1

How users will interact with the system; 4 /ERE S RGAH EAEH

What constitutes an error and how errors should be handled; &AM T —AMHR, DUEEEHR
(YR IZOSER

Required response times; L3R fi*) i 2 i [A] 5

The intended operating environment for the software, if this is a design constraint (e.g.,
hardware platform, operating system);
AP BRAFIZAT AL, BRI — it 2R (Fln, G, #IER5%0

All ranges, limits, defaults, and specific values that the software will accept; and

All safety related requirements, specifications, features, or functions that will be implemented in

software. #fF#ZHIFTATEE . BREE. BRMEIELAE; 1
ARSI TR 2 AR F R B HFE. BRIThRE.
Software safety requirements are derived from a technical risk management process that is closely integrated
with the system requirements development process. Software requirement specifications should identify
clearly the potential hazards that can result from a software failure in the system as well as any safety
requirements to be implemented in software. The consequences of software failure should be evaluated,
along with means of mitigating such failures (e.g., hardware mitigation, defensive programming, etc.). From
this analysis, it should be possible to identify the most appropriate measures necessary to prevent harm.
BT RRE — MRS E ISR, HESMS RAFRIT RS PR RIL SIE
M) — A RGP A TR G E, DRSS T 22 oK
The Quality System regulation requires a mechanism for addressing incomplete, ambiguous, or conflicting
requirements. (See 21 CFR 820.30(c).) Each requirement (e.g., hardware, software, user, operator interface,
and safety) identified in the software requirements specification should be evaluated for accuracy,
completeness, consistency, testability, correctness, and clarity. For example, software requirements should be
evaluated to verify that:
Jii B AR GV LR B AN TE B . B P AT B B P JE B oK (21 CFR 820.30(c).) M
AL AT SR TR E IR RR R (oo, BB R B iRE RO 4D BHERTE.
P —PE. ATRRUIYE. IEBRMEREE . I, R SR LU S

There are no internal inconsistencies among requirements; 7 >R [8] 7% P 45 F J& «

Al of the performance requirements for the system have been spelled out; 451 RS A
PR RE R oK

Fault tolerance, safety, and security requirements are complete and correct;

WM 22 . A2 VR R I e BN IR 1)«

Allocation of software functions is accurate and complete; - Th HERC B A& IEHh AT 52 B 1 5

Software requirements are appropriate for the system hazards; and #4753k % [E 3] R 4 /65

All requirements are expressed in terms that are measurable or objectively verifiable.

PR 5 SRk, 2 m] I 2 AR 6 1
A software requirements traceability analysis should be conducted to trace software requirements to (and
from) system requirements and to risk analysis results. In addition to any other analyses and documentation
used to verify software requirements, a formal design review is recommended to confirm that requirements
are fully specified and appropriate before extensive software design efforts begin. Requirements can be
approved and released incrementally, but care should be taken that interactions and interfaces among
software (and hardware) requirements are properly reviewed, analyzed, and controlled.

RLRAT — A T SR AT W0 M, BLEEXT SR B R G0 7 K B 75 SR XU 70 B 48 R ATIE M. R T
HEM TSGR RIS E s, @O — D IEBCTH PP R E AL 2 BB Bt 2T
AET, VEANML U R A& A1k . TR HEIFIZ D IAT, (HEEREXN 2T CRIAE) @R
() A B4R AT RE B 8 %, o A AN
Typical Tasks — Requirements LAY 5T 5K
Preliminary Risk Analysis #J:4F %40 #r
Traceability Analysis —Software Requirements to System Requirements (and vice versa) —Software
Requirements to Risk Analysis

AL T-RA T R BV F R AT RBIRG TR B 75 K 2R 74
Description of User Characteristics Fi J/RFIE (A

Listing of Characteristics and Limitations of Primary and Secondary Memory

T B B AZ AR B JR BRI FIRFAE 51 3R

Software Requirements Evaluation {75 K 14l

Software User Interface Requirements Analysis #cf4:F F 4% 1 7 SR 20 #r

System Test Plan Generation £ Zeil i i1 1 25 Ak

Acceptance Test Plan Generation 46 il it i1 1 A2 %
Ambiguity Review or Analysis 8 () 81 k% B4 Bt

5.2.3. Design il

In the design process, the software requirements specification is translated into a logical and physical
representation of the software to be implemented. The software design specification is a description of what
the software should do and how it should do it. Due to complexity of the project or to enable persons with
varying levels of technical responsibilities to clearly understand design information, the design specification
may contain both a high level summary of the design and detailed design information. The completed
software design specification constrains the programmer/coder to stay within the intent of the agreed upon
requirements and design. A complete software design specification will relieve the programmer from the
need to make ad hoc design decisions.

FEVCTHRIRRE T, AR SR TR 4 oy St A B — AN Z AR A B E T R s . B B AL f ik
T A 2 B . BT E 2 28 M5 A B M S BRI Z R, XA
THRZ AT BE N AR — N B KCF B B A PR R I THE B o 58 B B AR e 53 19 B 7% FR
H7E CE B SRR OHESE b o — A SE AR BT A R P DA AN 5 201 5 e BE T 7 6

The software design needs to address human factors. Use error caused by designs that are either overly
complex or contrary to users' intuitive expectations for operation is one of the most persistent and critical
problems encountered by FDA. Frequently, the design of the software is a factor in such use errors. Human
factors engineering should be woven into the entire design and development process, including the device
design requirements, analyses, and tests. Device safety and usability issues should be considered when
developing flowcharts, state diagrams, prototyping tools, and test plans. Also, task and function analyses, risk
analyses, prototype tests and reviews, and full usability tests should be performed. Participants from the user
population should be included when applying these methodologies.

AR E W AR R . R AR R, FRECR B B A eUE O P R R E, 2
FDAE I) st [AN G B 1) 1l e — o 2, B IR e AR A — MR R . AR AN 5T %
BN RS, AR R AR, U RIMAER. IREFERE. FEIFR LA
AR, N5 FE B de i 22 e R). 534k, NBHATAR S ANThRE by KR o0 A FEAIL
MV e DhRe eSS IR LT VER), MAEREHE ARZS.

The software design specification should include:

AT BT 0 B A 4

Software requirements specification, including predetermined criteria for acceptance of the software;
BAF T SRINL, ALFEEA IO HE) T 1 U 5

Software risk analysis; #cf4: XU 737 ;

Development procedures and coding guidelines (or other programming procedures);

TR g 4E T (BRHARRE Bt i i)

Systems documentation (e.g., a narrative or a context diagram) that describes the systems context in
which the program is intended to function, including the relationship of hardware, software, and the physical
environment;

KRGS (B, —DMROREIAEED ik T IEFBIT R RGERIAEL, SR B
S/EERZN A S OPSERY

Hardware to be used; 1 Ffj g

Parameters to be measured or recorded; &A% K5

Logical structure (including control logic) and logical processing steps (e.g., algorithms);

BARAEN (BFEZHEER T MZEEEPER (B, BsEIEND

Data structures and data flow diagrams; ¥ 45 #4 A1 i FE K,

Definitions of variables (control and data) and description of where they are used;

AR E X (IR ANEE) ALETRAE FH 9k

Error, alarm, and warning messages;

Supporting software (e.g., operating systems, drivers, other application software);

AR (BN, HAERS. WS, HA R T R A

Communication links (links among internal modules of the software, links with the supporting
software, links with the hardware, and links with the user); 158225 B CRPE N SRS, SCRFBAE
BERE, SRR NN D

Security measures (both physical and logical security); and %4={&if (WFFEHE 274D M

Any additional constraints not identified in the above elements.
IR TTER P E BT LR
The first four of the elements noted above usually are separate pre-existing documents that are included by
reference in the software design specification. Software requirements specification was discussed in the
preceding section, as was software risk analysis. Written development procedures serve as a guide to the
organization, and written programming procedures serve as a guide to individual programmers. As software
cannot be validated without knowledge of the context in which it is intended to function, systems
documentation is referenced. If some of the above elements are not included in the software, it may be
helpful to future reviewers and maintainers of the software if that is clearly stated (e.g., There are no error
messages in this program).
E TR B R T VYA JT R I RS CARE SO, SRR T S . BT IR R
KA HT R AT RS A0 A o BT T R AR AT A A BRI — A2, I B AR e ARt AT A g 5
MEF R —MES . QA TURDIRER TS SRR, SRR IIER, FTS% KRG 0F. & Bl
F U TR ACIEAETA T, X ATRER AR BN A4 N A W B, i 48
FE (BIANLEX MR P AN AE R RS B
The activities that occur during software design have several purposes. Software design evaluations are
conducted to determine if the design is complete, correct, consistent, unambiguous, feasible, and
maintainable. Appropriate consideration of software architecture (e.g., modular structure) during design can
reduce the magnitude of future validation efforts when software changes are needed. Software design
evaluations may include analyses of control flow, data flow, complexity, timing, sizing, memory allocation,
criticality analysis, and many other aspects of the design. A traceability analysis should be conducted to
verify that the software design implements all of the software requirements. As a technique for identifying
where requirements are not sufficient, the traceability analysis should also verify that all aspects of the design
are traceable to software requirements. An analysis of communication links should be conducted to evaluate
the proposed design with respect to hardware, user, and related software requirements. The software risk
analysis should be re-examined to determine whether any additional hazards have been identified and
whether any new hazards have been introduced by the design.
FEBAF B R R AL BRSBTS H . PAT B PP DA 2 Bt 2 5 52 % 1B, —8 A
B FAT AR GES . TR SR AR S, et AL A SR B3 255 R AT UR D AR SR BRI R
BRME R o AT BT PR P R AR . BE . BAE. WL R AAE . B
PRSI B HARTT T o SEEAT — MBI 20 B DLUE SRR AR Bt SEIL T B A B 75 5K . ME IR
ARG TR —DHOR, 18 0 b B NIESE R TH I U5 7 T R E W R R . RO I AE BE R EAT 2 A A
PEAE O TR F P A SRR BB 5 SR AR SO $ HE B BE Tt o B0 DRSS, 7 A 2 A PR A 96 DA 7€ 2 15 BT
By infe s S, —EITE R REFRGIARIBT .
At the end of the software design activity, a Formal Design Review should be conducted to verify that the
design is correct, consistent, complete, accurate, and testable, before moving to implement the design.
Portions of the design can be approved and released incrementally for implementation; but care should be
taken that interactions and communication links among various elements are properly reviewed, analyzed,
and controlled.
M BT HE B RN, RSB AT, NMEEAT — A IRt PR DRSS SO B . — 3. 58 %,
AERANPTAS I) o BB 20 VT AT HEAESR 5 BT St s (ER R S 3 pr e o 0 B Az i) AN [e
B Al AC WA
Most software development models will be iterative. This is likely to result in several versions of both the

software requirement specification and the software design specification. All approved versions should be
archived and controlled in accordance with established configuration management procedures.
KBV AFIT AR IEATUI o 30K A B 75 SR A BATE B 20 A B T LA FBOAS
FIT A LA A N 4% O 57) I B AR HEAT A R AT
Typical Tasks — Design L BAF 5%~ 11

Updated Software Risk Analysis 55 (1) 82F XU 20

Traceability Analysis - Design Specification to Software Requirements (and vice versa)

B - T R B TR (AR R B RGE RO

Software Design Evaluation 34451 PEAS

Design Communication Link Analysis #1732 5884570 Hr

Module Test Plan Generation A7l it A B

Integration Test Plan Generation £& il i) 4= B

Test Design Generation (module, integration, system, and acceptance)

MR TR (A, SR RGO
5.2.4. Construction or Coding
1) 2 B L
Software may be constructed either by coding (i.e., programming) or by assembling together previously
coded software components (e.g., from code libraries, off-the-shelf software, etc.) for use in a new
application. Coding is the software activity where the detailed design specification is implemented as source
code. Coding is the lowest level of abstraction for the software development process. It is the last stage in
decomposition of the software requirements where module specifications are translated into a programming
language.
ARy EGE I g s (RIZRAE) BT — R il — 3 LA R A A0 B S i g b i A A 4
KE A IE, B SRIE M. gAD A VEAN R BT o0 VR D9 A RS SE it i) RS Bl . w2
BT R RICE SR o R R R RGP B, AR s — MR S .
Coding usually involves the use of a high-level programming language, but may also entail the use of
assembly language (or microcode) for time-critical operations. The source code may be either compiled or
interpreted for use on a target hardware platform. Decisions on the selection of programming languages and
software build tools (assemblers, linkers, and compilers) should include consideration of the impact on
subsequent quality evaluation tasks (e.g., availability of debugging and testing tools for the chosen language).
Some compilers offer optional levels and commands for error checking to assist in debugging the code.
Different levels of error checking may be used throughout the coding process, and warnings or other
messages from the compiler may or may not be recorded. However, at the end of the coding and debugging
process, the most rigorous level of error checking is normally used to document what compilation errors still
remain in the software. If the most rigorous level of error checking is not used for final translation of the
source code, then justification for use of the less rigorous translation error checking should be documented.
Also, for the final compilation, there should be documentation of the compilation process and its outcome,
including any warnings or other messages from the compiler and their resolution, or justification for the
decision to leave issues unresolved.
O h 30 RS — P B AR E S, (H AT RE AR XTI SR A AR A IV g 1E (B A
FEFF) o WEACHD B 2 P BB R AE — > H AR B~ & LA o B8 1B 35 i Wil 5 AR
PR TR (HBES . R MRS) N AL IE X B 5 B BT & PR A AE 55 Can il &% 1 m] F 1 AN
% EE E MR TR AR i E .
Lo g PR A AT ONA AR ISR AL AT I ZO AN 4R S, DL B R A o 2 AL A A AN T R AT A6 FH A R AR B 1
ANFEI), T H K B 4 P28 15 s AR B AT REEAN AT BB IC S o SR, 724w A A i AR &5 R
B3¢ T A% R 0 R B R 30 FH SR SR ATS A7 AR B A v) 2 P iR
A0 XA e P o) B RS A IR F TR ARS B B A, IS AT SRAS AN ™ 4 (R ARG A
B . [FIRE, X T & dmie, RO CRm PR LG R RSO, AR B i ds KL HER 1
A ARG S, B T AR AR R) R R E R FE

Firms frequently adopt specific coding guidelines that establish quality policies and procedures related to the
software coding process. Source code should be evaluated to verify its compliance with specified coding
guidelines. Such guidelines should include coding conventions regarding clarity, style, complexity
management, and commenting. Code comments should provide useful and descriptive information for a
module, including expected inputs and outputs, variables referenced, expected data types, and operations to
be performed. Source code should also be evaluated to verify its compliance with the corresponding detailed
design specification. Modules ready for integration and test should have documentation of compliance with
coding guidelines and any other applicable quality policies and procedures.
O FVAH R R R G i 415 e A 07 5 A g e R A S) o B 5 B AR o AR BL 32 PR AN DAIESE
TREMISIRFIAT S Ik . XA R MBS E, WA, KUg. ZIRUEEBATES . diSTF
WRLY— MR A F AR A 5 S, P A, S50 E, TR EHERE &
AT FIHRAE o YRACHD R N2 VAL DAL SERF S A R VE AN BT 70 A Y o O v 2 BSORT N kP A Bk i A
6 gt 1 B AT A FLAth mT P 6 JoT B A AR) SO
Source code evaluations are often implemented as code inspections and code walkthroughs. Such static
analyses provide a very effective means to detect errors before execution of the code. They allow for
examination of each error in isolation and can also help in focusing later dynamic testing of the software.
Firms may use manual (desk) checking with appropriate controls to ensure consistency and independence.
Source code evaluations should be extended to verification of internal linkages between modules and layers
(horizontal and vertical interfaces), and compliance with their design specifications. Documentation of the
procedures used and the results of source code evaluations should be maintained as part of design
verification.
A source code traceability analysis is an important tool to verify that all code is linked to established
specifications and established test procedures. A source code traceability analysis should be conducted and
documented to verify that:
PEACAS PR 2 1 S A H A AR E . IR FR A D AT RS AT AT ER £ 1 — AN ER A R 77 1K
RIMES R EAER RS TR AR R, WA DO E IS o it 8. 2= A/
A AP R I, DU ORACRS B T & — SO A o YA RS DA L S i) S A PR AT 1]
FEEG R OKFMEEZLD , DA RatE. RS AR AL 45
RMNAE RV Z L — o AT 44 . — DNEAEDE ER A & — DN TR, RIS 8] ot ar
FA R YE Ul B AT AR I T AT . RERAT Fead s — MIEAADE B2 70 Hr . DAIESE:

Each element of the software design specification has been implemented in code;

AR A A Jo 3R © AR S

Modules and functions implemented in code can be traced back to an element in the software design
specification and to the risk analysis;

AR AN AR Sk) T BE T R 18 B B A BRI I — A ez, BAR RIS 7075

Tests for modules and functions can be traced back to an element in the software design specification
and to the risk analysis; and

LA T BE B AT 38 B B AT BRI — A ez, AR i BLA

Tests for modules and functions can be traced to source code for the same modules and functions.
ATy 5 B0 X P 36 9 1 AR [R5 HRORD o e YA
Typical Tasks — Construction or Coding # {T- 2% 3 5k 4w i

Traceability Analyses —Source Code to Design Specification (and vice versa) —Test Cases to Source
Code and to Design Specification

B Ar-UE D BN BTN Z) ORCZTRERD -IEARR AN BT R4 £ X FH 457

Source Code and Source Code Documentation Evaluation

PEACHE AN YA RS SCAF PP AL

Source Code Interface Analysis V5% 4% 1347

Test Procedure and Test Case Generation (module, integration, system, and acceptance)

MR e AT A A2 B CBEE . R, RGNNSO

5.2.5. Testing by the Software Developer /4Tt & & AT BIIR
Software testing entails running software products under known conditions with defined inputs and
documented outcomes that can be compared to their predefined expectations. It is a time consuming, difficult,
and imperfect activity. As such, it requires early planning in order to be effective and efficient.
BATFIRAE ORI AT T I AT A, I 1 E B% AN 5 056 2 SR TR 45 SRAH EL L 10 sk
HEE R B —OHEN . INAEAAAAEIRIE G S . AT NS, 8 F BB TR DL A RO = 20
Test plans and test cases should be created as early in the software development process as feasible. They
should identify the schedules, environments, resources (personnel, tools, etc.), methodologies, cases (inputs,
procedures, outputs, expected results), documentation, and reporting criteria. The magnitude of effort to be
applied throughout the testing process can be linked to complexity, criticality, reliability, and/or safety issues
(e.g., requiring functions or modules that produce critical outcomes to be challenged with intensive testing of
their fault tolerance features). Descriptions of categories of software and software testing effort appear in the
literature, for example:
R R B, N A] Wl AT A 2 rTAT B o e AR s THRI . IsATHAEEL BEUR (A
R TR k. HA GaA. BF. R, TURS R SO BREE . BN IR BT
SRR AT SR I AR ATAE TR AN e A in) @ (i an, 7 AR OB A SR) 7 SR Th e s e,
EATZ B RS D REEOR PR BRARER . ST A K T AR 20X 0 7 R ik, 5]
an:

NIST Special Publication 500-235, Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric;

5[5 [AR AERCRBT T, Skt J8 52 2% FE A7V

NUREG/CR-6293, Verification and Validation Guidelines for High Integrity Systems;

=70 R G IR UEFIRA A ;

IEEE Computer Society Press, Handbook of Software Reliability Engineering.

RS T LEDS, WA SEET.

Software test plans should identify the particular tasks to be conducted at each stage of development and
include justification of the level of effort represented by their corresponding completion criteria.

BRAT A TS N 8 28 A IT AR BARAT R AT 55, LR 5 AT 55 N 58 RSO THE AR I L) 2Kk~
Pallu s

Software testing has limitations that must be recognized and considered when planning the testing of a
particular software product. Except for the simplest of programs, software cannot be exhaustively tested.
Generally it is not feasible to test a software product with all possible inputs, nor is it possible to test all
possible data processing paths that can occur during program execution. There is no one type of testing or
testing methodology that can ensure a particular software product has been thoroughly tested. Testing of all
program functionality does not mean all of the program has been tested. Testing of all of a program's code
does not mean all necessary functionality is present in the program. Testing of all program functionality and
all program code does not mean the program is 100% correct! Software testing that finds no errors should not
be interpreted to mean that errors do not exist in the software product; it may mean the testing was
superficial.

TR AR B R, A AR RN R B A B R R . B T S BRI, A
REM™ A% I 38 DU] BEsm AT — DA = o2 A RAT R, FIRE, AT R ARy is
AT 7= A B A T BE R AL R B A . A — NI B 7V) 2R Y AT DR AIE — MR B 7 AR
JEHIK . FrE R D RE IO A R A SRR . — MR R TE RIS A Z 38 i L 2 T e
BIPAERE P . FrA AR P DI Re A T R AR O AN SR XAMER A 70 2 B 1B RIS R
HVERAEI, AR B RAFAE s BT 9 B .

An essential element of a software test case is the expected result. It is the key detail that permits objective
evaluation of the actual test result. This necessary testing information is obtained from the corresponding,

predefined definition or specification. A software specification document must identify what, when, how,
why, etc., is to be achieved with an engineering (i.e., measurable or objectively verifiable) level of detail in
order for it to be confirmed through testing. The real effort of effective software testing lies in the definition
of what is to be tested rather than in the performance of the test.
BAF MR B — DA Boc 2 IS R o SOV SEBRINASE SR IFEAT 20 M PPAY 2 B ZE A A7 o MR
TIE (1) 5E bR HESRAT 0 T MNRAE 2 o — RIS ST 00 200 FH sd i Bl st AT A IR v A5
#E CRPPTIN S B I UE SE KD e I B e At 4, ATy, BRE, ottt A%, AR
AT U 4, TANE T IR AT
A software testing process should be based on principles that foster effective examinations of a software
product. Applicable software testing tenets include:
AN I AR N DA TR il A AkRer 1 DA SR I ot R R 2 A 0 D)

The expected test outcome is predefined;

T e 7 T A H 45

A good test case has a high probability of exposing an error;

HAT e e A R T B AR R 200k 4915

A successful test is one that finds an error;

RI—EER B — A R

There is independence from coding;

AL AR) 3 324

Both application (user) and software (programming) expertise are employed;

RN (D Mg FEFwi) &%

Testers use different tools from coders;

M 534S FH A TR) T 2 L 8 1 R

Examining only the usual case is insufficient;

DCH R A FH AP 2 AN 8 2 s

Test documentation permits its reuse and an independent confirmation of the pass/fail status of a test
outcome during subsequent review.

DA AT 5% SO VF AR B A RO i PP 3 R B — S0l 2R A i /2R CIR A)
MSTHHIN

Once the prerequisite tasks (e.g., code inspection) have been successfully completed, software testing begins.
It starts with unit level testing and concludes with system level testing. There may be a distinct integration
level of testing. A software product should be challenged with test cases based on its internal structure and
with test cases based on its external specification. These tests should provide a thorough and rigorous
examination of the software product's compliance with its functional, performance, and interface definitions
and requirements.

— BRI e s SRS (Flan, ARRSERD , BIRTESHAAE . W TRMATT R, PLRGEZINR
SR BRI AR B — AN i AR A L P R A A PR A], AR L
PRI] o X S S i — A B RS B A A, DUAIWT A = i o2 S A& o DhRe . MhRe
ANE T 78 SCRIEER

Code-based testing is also known as structural testing or "white-box" testing. It identifies test cases based on
knowledge obtained from the source code, detailed design specification, and other development documents.
These test cases challenge the control decisions made by the program; and the program’s data structures
including configuration tables. Structural testing can identify "dead" code that is never executed when the
program is run. Structural testing is accomplished primarily with unit (module) level testing, but can be
extended to other levels of software testing.

F TR MR R SR E “ AAa/&E” Wl SRR WIRACRS . 4T BT bR e AR TR
SCA AT I R0 R R A5 o 3 P 51 R AR (8 PR s RS s S B R T B R AR 7 2
ity o SR RT IR AR B AT I R BAT I “FE8” 1T/ E ARSI v) 6 Bh 5ot (o)

MK TE R, H AT A 2B A I) FeAth 2

The level of structural testing can be evaluated using metrics that are designed to show what percentage of
the software structure has been evaluated during structural testing. These metrics are typically referred to as
“coverage” and are a measure of completeness with respect to test selection criteria. The amount of structural
coverage should be commensurate with the level of risk posed by the software. Use of the term “coverage”
usually means 100% coverage. For example, if a testing program has achieved “statement coverage,” it
means that 100% of the statements in the software have been executed at least once. Common structural
coverage metrics include:

SERIA I S T A FE B AT VAL, Wit B8 B I B 7 235) DA 1B 004 25 4 L VP AT 1) 1 0 6 02
Zb, REERIMEIAE “Ei” M TRk r) s At . S E RERN 585 K
XU AR DL L . “ 78 i 7 IX A AR TE (R4 3 % /2 15 100%78 o o i1, an R — DAy B4 58 ik “ 15
FERT B LA 100% K TE A B AT — IR — ARSI 78 o R A

Statement Coverage — This criteria requires sufficient test cases for each program statement to be executed
at least once; however, its achievement is insufficient to provide confidence in a software product's behavior.
AR - 2R 08 B R REAN PTHAT 15 F) 2D AT — B 91 s SR, 078 o5) 58 AN 22 BA
AP AT AR ST

Decision (Branch) Coverage — This criteria requires sufficient test cases for each program decision or
branch to be executed so that each possible outcome occurs at least once. It is considered to be a minimum
level of coverage for most software products, but decision coverage alone is insufficient for high-integrity
applications.

53 SRR i) 5 R - B RO AR AT AT AR P 4 8 B0y SRR AT R B BRI, LA AN W] B R &5
EAHI— Ko X TZHEA W, EPONNR AN NE G IO, B S A E 7 T e R
IR AT

Condition Coverage — This criteria requires sufficient test cases for each condition in a program decision to
take on all possible outcomes at least once. It differs from branch coverage only when multiple conditions
must be evaluated to reach a decision.

R I -Z R N — A T AT RE S SR 2 /D AT — IRER P 4 BB SR A A 2 6 B P 481« A 2
Z H MRV E R, BT SO

Multi-Condition Coverage — This criteria requires sufficient test cases to exercise all possible combinations
of conditions in a program decision.

Z A AT AT AT AR P P AT R4 & B 26 A 3R A 2 08 i ISR 481

Loop Coverage — This criteria requires sufficient test cases for all program loops to be executed for zero,
one, two, and many iterations covering initialization, typical running and termination (boundary) conditions.
PEFRE - LR NPT AT HATRE PR EE AT O, LR, 20 EIR Rt 29 A B, RS Tir2 ik
R H#WIIR. ATl R %44

Path Coverage — This criteria requires sufficient test cases for each feasible path, basis path, etc., from start
to exit of a defined program segment, to be executed at least once. Because of the very large number of
possible paths through a software program, path coverage is generally not achievable. The amount of path
coverage is normally established based on the risk or criticality of the software under test.

BB VA PATEAS . FERER SR AL I, AN LR B (B0 A
THEZEDPAT — k. A REREE — AN AR P A e AT, BRATE SRl AR e . BRIt
P e AR A I XA) RS, B K A P T

Data Flow Coverage — This criteria requires sufficient test cases for each feasible data flow to be executed
at least once. A number of data flow testing strategies are available.

BE IR e - 2R YRR A AT B IR D PAT — A B 2 8 IR 481 o AV 22 R A B kB
B o
Definition-based or specification-based testing is also known as functional testing or "black-box" testing. It
identifies test cases based on the definition of what the software product (whether it be a unit (module) or a

complete program) is intended to do. These test cases challenge the intended use or functionality of a
program, and the program'’s internal and external interfaces. Functional testing can be applied at all levels of
software testing, from unit to system level testing.

Fe T A€ bR o B I A A E D REIIAER “ RRARI” o RYE AT 2 2 R i i TR FH 3 1)
i A o X L0 BB — R e RO B i@ Bt gE, A SRR PP R AR A 1. Dhse il
AT AR T 9, BT B RGN

The following types of functional software testing involve generally increasing levels of effort:

T DD RE RN) SR AL T LR R 2 1 AR

Normal Case — Testing with usual inputs is necessary. However, testing a software product only with
expected, valid inputs does not thoroughly test that software product. By itself, normal case testing cannot
provide sufficient confidence in the dependability of the software product.

AR BT DL E A A\ AT IR 0 B o SR, 0 T ATRU 45 AT A S, AT AL
YA A BEAD R IHRIZ AN AT o BRI B R R B, AN BE A it (0 7T SE PR SR A 2 8 1
PRIE

Output Forcing — Choosing test inputs to ensure that selected (or all) software outputs are generated by
testing.

S A R - B N\ DA DRI AR e e (BRAER) R4t .

Robustness — Software testing should demonstrate that a software product behaves correctly when given
unexpected, invalid inputs. Methods for identifying a sufficient set of such test cases include Equivalence
Class Partitioning, Boundary Value Analysis, and Special Case Identification (Error Guessing). While
important and necessary, these techniques do not ensure that all of the most appropriate challenges to a
software product have been identified for testing.

Tt - IR A AN 245 AT RGN, DN NE IR B — AN B AT IR s AT . PO — B
PRI 2 S 7 7 (BB S INA) K777 CEEND BFEEMIERIr . 4 5HYE 7 X AR
PS50 RGN o IR BEHR IEAS B DRAE I BE TR) HS — B 7 it TR B BT A 5 =4 R Bk
Combinations of Inputs — The functional testing methods identified above all emphasize individual or
single test inputs. Most software products operate with multiple inputs under their conditions of use.
Thorough software product testing should consider the combinations of inputs a software unit or system may
encounter during operation. Error guessing can be extended to identify combinations of inputs, but it is an ad
hoc technique. Cause-effect graphing is one functional software testing technique that systematically
identifies combinations of inputs to a software product for inclusion in test cases.

A MR- AN D R AR T V%, e L A R o A A S e — A N o AR PR AT 251, 28
P A] 2 BN T OB AT o B AT I N 2 R — AN B B T B R G AT 1R AT REE W 2 A e
ANWIHE . BRSNS 2 2 NS, (HRR TR A BoR o PR B 73 b — T L)
REFAFINATA, B AT AR Gesth iU — N7 b B0k P) 0 35 B N AL 5

Functional and structural software test case identification techniques provide specific inputs for testing,

rather than random test inputs. One weakness of these techniques is the difficulty in linking structural and
functional test completion criteria to a software product's reliability. Advanced software testing methods,
such as statistical testing, can be employed to provide further assurance that a software product is dependable.
Statistical testing uses randomly generated test data from defined distributions based on an operational

profile (e.g., expected use, hazardous use, or malicious use of the software product). Large amounts of test
data are generated and can be targeted to cover particular areas or concerns, providing an increased
possibility of identifying individual and multiple rare operating conditions that were not anticipated by either
the software product's designers or its testers. Statistical testing also provides high structural coverage. It
does require a stable software product. Thus, structural and functional testing are prerequisites for statistical
testing of a software product.

T REFNZEAE AT P BRI B AR S et 1R g N, AN BEALIN B o 1K S AR — > R
8¢ A2 AR AR &5 A AN Ty e WK 1Y) 56 B A4 55 A 7 il B AT SE VR IR SRR o Geat DN P i idls (Gl
B ATARHE — AT IZ AT B T A2 B AR € B A TP B2 (et it RO WU L B R Aot

1)

2)

3)

MECESAE)D o BRI — s r LA, BRI BEAS B Sl st AN a3 T A S
M2 B W AT 56, AT AR KB BB I T 78 o R) Xy e G R R At B
SRR . HIEATEE AR R . BRI, SRR R R — AN R S G) Sk
At

Another aspect of software testing is the testing of software changes. Changes occur frequently during
software development. These changes are the result of 1) debugging that finds an error and it is corrected, 2)
new or changed requirements (“requirements creep™), and 3) modified designs as more effective or efficient
implementations are found. Once a software product has been baselined (approved), any change to that
product should have its own “mini life cycle,” including testing. Testing of a changed software product
requires additional effort. Not only should it demonstrate that the change was implemented correctly, testing
should also demonstrate that the change did not adversely impact other parts of the software product.
Regression analysis and testing are employed to provide assurance that a change has not created problems
elsewhere in the software product. Regression analysis is the determination of the impact of a change based
on review of the relevant documentation (e.g., software requirements specification, software design
specification, source code, test plans, test cases, test scripts, etc.) in order to identify the necessary regression
tests to be run. Regression testing is the rerunning of test cases that a program has previously executed
correctly and comparing the current result to the previous result in order to detect unintended effects of a
software change. Regression analysis and regression testing should also be employed when using integration
methods to build a software product to ensure that newly integrated modules do not adversely impact the
operation of previously integrated modules.

A A T A AR BRI . AR B Y INAE AT A] o X 48R B R AR IR A A 1)
RIVEE R G A DAAERR b, IRkt 2) Brieed iR ¢ “FRIGAR” D ¢ 3) HRIMENA
RCE R B A St O, ABRR T e RET— AR S GARTD P2 AT 2S5 N A
SH) R A A B, AR — DRI E SR A 2l A B IE AR T B
WAERA SN, MR SEAR B8 AN S A 7t) A 7 TS SRAS RS2 o A5 B 8] U5 23 B A X R AIE AR
S IEA AR AT it B AT 7 7 A TR R . Dy S) RIRE AT B0 [V I) e B, (8] U5 A 7 T 0
RSO (D, SRR SR B bnitE . JRARES . TR A . A S B
R E A B R I REIE o[BI P B GE AT A R], R — SRR R A IE TR AT, PR ST
-5 BLALE 1 &5 R AT O At ARSI — N2 B8 7 AR AR T R PR RO SR o 2408 P AR 7 V2R — AN A
PN R R BT U 2 A R [00 K A D 5 B BRI AR I AN 2508 S 1T A1 i RS B 0 Ak Bt SRAN
R EEH .

In order to provide a thorough and rigorous examination of a software product, development testing is
typically organized into levels. As an example, a software product's testing can be organized into unit,
integration, and system levels of testing.

N T SR — AT A% B A S 2, T RIS FAZ GO BT H . B, — AN
AT TG AR R SRR) -

Unit (module or component) level testing focuses on the early examination of sub-program functionality and
ensures that functionality not visible at the system level is examined by testing. Unit testing ensures that
quality software units are furnished for integration into the finished software product.

Bn (BEHREHAT) Zonl b T TR DIRE M Bk 2, DABORAE RS 200 A &1 D Re AT 4
R R . ool AR DR o 2 A S o R FO B 5 B 28 B A 7 i

Integration level testing focuses on the transfer of data and control across a program's internal and external
interfaces. External interfaces are those with other software (including operating system software), system
hardware, and the users and can be described as communications links.

B BN A SR b T Hlls R R RS e A A2 TR o AMER R LR 4R AR B (LG ERIE RS
)« RGUEAE R, AT IR DY I8 TR R

System level testing demonstrates that all specified functionality exists and that the software product is
trustworthy. This testing verifies the as-built program's functionality and performance with respect to the
requirements for the software product as exhibited on the specified operating platform(s). System level

software testing addresses functional concerns and the following elements of a device's software that are
related to the intended use(s):
RGP MRUE BT A JE I DB SARAE, A7 R HA B 0 o 3X AN R I 3 P IE SEAE Ry
VEF- & I L R B 55 A 72 i e SRAH SR B Y R D BE AT BE - AR G 0n) DNk v ¢ B T RE S Rl AT
SR AR K S TR -

Performance issues (e.g., response times, reliability measurements);

VERE R Cpldn, ma RER A, ATEE PRI E D

Responses to stress conditions, e.g., behavior under maximum load, continuous use;

RLIPIREERNL, 1, e R ABERAT THIAT N, RREfE i

Operation of internal and external security features;

N AR 22 A DI RE B AT s

Effectiveness of recovery procedures, including disaster recovery;

WA R, AR RAERIR

Usability; wJ FH%;

Compatibility with other software products; 5 HoAt % {477 1 3 28

Behavior in each of the defined hardware configurations; and &€ AEECE R TN &K

Accuracy of documentation.

ST ARG E

Control measures (e.g., a traceability analysis) should be used to ensure that the intended coverage is
achieved.

POEFESIE R (B, —ASRrEE AT B8ORS RO 5 Y .

System level testing also exhibits the software product's behavior in the intended operating environment. The
location of such testing is dependent upon the software developer's ability to produce the target operating
environment(s). Depending upon the circumstances, simulation and/or testing at (potential) customer
locations may be utilized. Test plans should identify the controls needed to ensure that the intended coverage
is achieved and that proper documentation is prepared when planned system level testing is conducted at sites
not directly controlled by the software developer. Also, for a software product that is a medical device or a
component of a medical device that is to be used on humans prior to FDA clearance, testing involving human
subjects may require an Investigational Device Exemption (IDE) or Institutional Review Board (IRB)
approval.

ARGZON MR 7B U BRI AT O o SRR A e S AR A T A AR R H bR AT
MR 1. WTRESMAAE BAE) P A ERYMSE . B/ I AT BT RN A
RE LA M TH R R G0 DGl IR B 500 75 ZE RO H], DARR R SEI PN o5, 2 id 2
Bt [FRE, RET— 8, BRI A EE — N AN BT Sk B) AR, 72343 FDARY
ZAREI AT, A5 320 R A IR 58 7 N R 2S5 S B B A L Ok

Test procedures, test data, and test results should be documented in a manner permitting objective pass/fail
decisions to be reached. They should also be suitable for review and objective decision making subsequent to
running the test, and they should be suitable for use in any subsequent regression testing. Errors detected
during testing should be logged, classified, reviewed, and resolved prior to release of the software. Software
error data that is collected and analyzed during a development life cycle may be used to determine the
suitability of the software product for release for commercial distribution. Test reports should comply with
the requirements of the corresponding test plans.

IR Ry« s A R S 2R N DL H A 58 R B 4518 05 SORAEBH o At AT RLIE & 1P B A1 AEIZ A7
Je e Hbr g, N IE S EAT A Ja S R rb s Y o e A Ao 81 i B R AR R T8 T 2 Wi R
WA G PERTNIE L. AT RIS T A i e SIWSCER AN 73 b 28] B0 A U e 1 A B T
ATRE EAE . R T AT A LI T) Y R

Software products that perform useful functions in medical devices or their production are often complex.
Software testing tools are frequently used to ensure consistency, thoroughness, and efficiency in the testing

of such software products and to fulfill the requirements of the planned testing activities. These tools may
include supporting software built in-house to facilitate unit (module) testing and subsequent integration
testing (e.g., drivers and stubs) as well as commercial software testing tools. Such tools should have a degree
of quality no less than the software product they are used to develop. Appropriate documentation providing
evidence of the validation of these software tools for their intended use should be maintained (see section 6
of this guidance).

AT A R ST B A 7= Th R IR B 38 B 2 I o 8 A I3 T B R R XA IR R A
) — B ISR AR o X8 T AT RS SRR N B DM T BT (L) IR 5 2245 ik
W i, SRSHAIFEZE) , AR T . X T HENBA — RN ERE, RN
AT F T IE R BIAT 77 o RS SR A T 0 A3 T 5 PR A 34 B i (0 > K B S (B A
R RHEH) -
Typical Tasks — Testing by the Software Developer
18 AT S5 - RN SR RAT B IR

Test Planning 4111

Structural Test Case Identification 4544335t B 51 % 5]

Functional Test Case Identification Zfj&EMIia 514 5

Traceability Analysis - Testing —Unit (Module) Tests to Detailed Design —Integration ~ Tests to
High Level Design —System Tests to Software Requirements

AL - R TR T CBEEY) M- 20 i E S Bl k-2 7 sk 24t Mk

Unit (Module) Test Execution $RATEIG (BB 3K

Integration Test Execution Hh474E il

Functional Test ExecutionFf AT T #& il ik

System Test Execution $447 R4t

Acceptance Test Execution $AT IR

Test Results Evaluation iR 45 5 1EA4

Error Evaluation/Resolution %815 PF-Ah/fif ok

Final Test Report & MRAIR 15

5.2.6. User Site Testing F3 7 BLizA

Testing at the user site is an essential part of software validation. The Quality System regulation requires
installation and inspection procedures (including testing where appropriate) as well as documentation of
inspection and testing to demonstrate proper installation. (See 21 CFR 820.170.) Likewise, manufacturing
equipment must meet specified requirements, and automated systems must be validated for their intended use.
(See 21 CFR 820.70(g) and 21 CFR 820.70(i) respectively.)

FH P B D2 A 900 1Y) 32 BB I o o1 B AR Gk N SR 2 e A A AR CROFE AN, 25 I BB L)
AR AS: 25 SCAFFIIRIE B2 75 222558 24 (IL21C FR 820.170.) o [AIFEHL, A2 77 5 & 2 2000 2 45 2 75K,
I H B shik & 5 2ipk ek LT T i (121 CFR 820.70(g) and 21 CFR 820.70(i)) -
Terminology regarding user site testing can be confusing. Terms such as beta test, site validation, user
acceptance test, installation verification, and installation testing have all been used to describe user site
testing. For purposes of this guidance, the term “user site testing” encompasses all of these and any other
testing that takes place outside of the developer’s controlled environment. This testing should take place at a
user's site with the actual hardware and software that will be part of the installed system configuration. The
testing is accomplished through either actual or simulated use of the software being tested within the context
in which it is intended to function.

P A R ARAE T R N K. R, Wibetalllik. Idp2edE. H 3ol 3 An
TR IHS] F R A] P B, AR R EHM S, “H B XA S X
B TG FETT RN B3 (RS2 P IR 2 A0 R AR B FLAAS I o P B2 AN, e — A A L SRR AR AR A () FH
By, M HEA IR XA LR ARG E . H Il B i 52 B 4 FH Bl i w40 4

BAFRTERE AT AE T Th A Y 6 N 8 k.

Guidance contained here is general in nature and is applicable to any user site testing. However, in some
areas (e.g., blood establishment systems) there may be specific site validation issues that need to be
considered in the planning of user site testing. Test planners should check with the FDA Center(s) with the
corresponding product jurisdiction to determine whether there are any additional regulatory requirements for
user site testing.

X R RS AR EAREE R, I B E ST B, AR, FETHRIE T B, L
QU Can, MRV RS ATREARFRILA SR) S R LS . WA RIA N5 F D AN @I
AR B OECR, DAIIE & 57 HAR ST H P B2 A P 8 SN2 K

User site testing should follow a pre-defined written plan with a formal summary of testing and a record of
formal acceptance. Documented evidence of all testing procedures, test input data, and test results should be
retained.

F P I A S 3 — A WUE - R, R A — 0 1R sCH IR 45 A — fy IR QI i i o o B
TR P IR DU A\ B A 45 2R) SO i

There should be evidence that hardware and software are installed and configured as specified. Measures
should ensure that all system components are exercised during the testing and that the versions of these
components are those specified. The testing plan should specify testing throughout the full range of operating
conditions and should specify continuation for a sufficient time to allow the system to encounter a wide
spectrum of conditions and events in an effort to detect any latent faults that are not apparent during more
normal activities.

JSEAT UE 48 UIE B 4 B B 22 e AN B 1 REAE AR . SR EUE A ORI s F T T W R g 4, JF
B R IZLE A A B RRCAS T2 4 E 1 o Tt R L VE AR U6 IR AN B AT 2 AR AR B0, 0 SV 400 i) S 4
TEOL, BVEVFRG S AN 2 SRR 0E 1) 2 B8 I TR], DAt PRI 381 78 58 8 1R % 3l 3 18]
I HIAN B S BT AR J B iR

Some of the evaluations that have been performed earlier by the software developer at the developer's site
should be repeated at the site of actual use. These may include tests for a high volume of data, heavy loads or
stresses, security, fault testing (avoidance, detection, tolerance, and recovery), error messages, and
implementation of safety requirements. The developer may be able to furnish the user with some of the test
data sets to be used for this purpose.

FETF R 2 2 A RN G2 RS RAT B — BE PP Al R AE SEFR S FH IR PR EAT . IX e] A 50 RS A
AR 24, BRI GRS, BRI, SRS | BHRE R A e ERE . WA R
AT AP LA (5 FH 3 — S50 H A A a0l il i £

In addition to an evaluation of the system's ability to properly perform its intended functions, there should be
an evaluation of the ability of the users of the system to understand and correctly interface with it. Operators
should be able to perform the intended functions and respond in an appropriate and timely manner to all
alarms, warnings, and error messages.

During user site testing, records should be maintained of both proper system performance and any system
failures that are encountered. The revision of the system to compensate for faults detected during this user
site testing should follow the same procedures and controls as for any other software change.

bR 7RG R GUE A PAT HU TR RE), B RITEAE P B R G R S RGUERIIRE . #AE R
LREPAT TR RE, I LAid =4 SN i 77 200 B A7 e 4l . 25 AN R A5 B e [mI N o ZE IR FE Pt 3
(B, ROCFAGEY O HIE Y RGPEREAUEAT RGN . NA RGNS TR TR AN A Rl 2R 21 (1) H
B, BEXATAT HAMBRAEARTE ARG LA A [F) RS e A%

The developers of the software may or may not be involved in the user site testing. If the developers are
involved, they may seamlessly carry over to the user's site the last portions of design-level systems testing. If
the developers are not involved, it is all the more important that the user have persons who understand the
importance of careful test planning, the definition of expected test results, and the recording of all test
outputs.

BAITENR RS, BAaAS S AP I. MBI GRS, AT — B 20

RPRJEE5, BRI ERARGN K. MR RAN GRS Y, EMEERZ, NATRTA AN AERAT4m
PRI B B, TR I 5 SR I e % B DU H 4 SR e 3%
Typical Tasks — User Site Testing £ #1455) 371k

Acceptance Test Execution Wil AT

Test Results Evaluation iR 45 5 1A%

Error Evaluation/Resolution %835 3FA /fif i

Final Test ReportZ 4R 15

5.2.7. Maintenance and Software Changes 4EJPFIR 2T
As applied to software, the term maintenance does not mean the same as when applied to hardware. The
operational maintenance of hardware and software are different because their failure/error mechanisms are
different. Hardware maintenance typically includes preventive hardware maintenance actions, component
replacement, and corrective changes. Software maintenance includes corrective, perfective, and adaptive
maintenance but does not include preventive maintenance actions or software component replacement.
N AR, RPN R I EABORA R R R 4R — R o BEARATE A R EVE RS —ANF Y, BN
AT TR / SRR LR AR o SRR SR G R T E PR AR R 4E 3 AT 3 AL B4R A . R4
PEFEMIE. 5BE. SN PEYES, (EACSE TGRS 1T 3 B2 A H S
Changes made to correct errors and faults in the software are corrective maintenance. Changes made to the
software to improve the performance, maintainability, or other attributes of the software system are
perfective maintenance. Software changes to make the software system usable in a changed environment
are adaptive maintenance.
A IE B RR AT PR AT B AR R O 44 . B R RIMERE . AR MR e At AR S T
TRBTVEAES o RAE— 22 SRR ST AT F A8 2R G AT BB AR B S A 4 7
When changes are made to a software system, either during initial development or during post release
maintenance, sufficient regression analysis and testing should be conducted to demonstrate that portions of
the software not involved in the change were not adversely impacted. This is in addition to testing that
evaluates the correctness of the implemented change(s).
IR N RGHATAR IR, BFE ARG R WIA], BOE AR S AT 4R A, SOEEAT 7 20 1 R U
A A AR B AR BE R S AT BB 05 32 BIAS RS o 3R AN AN B 37 Tk S it A2 58) IE A 1
The specific validation effort necessary for each software change is determined by the type of change, the
development products affected, and the impact of those products on the operation of the software. Careful
and complete documentation of the design structure and interrelationships of various modules, interfaces, etc.,
can limit the validation effort needed when a change is made. The level of effort needed to fully validate a
change is also dependent upon the degree to which validation of the original software was documented and
archived. For example, test documentation, test cases, and results of previous verification and validation
testing need to be archived if they are to be available for performing subsequent regression testing. Failure to
archive this information for later use can significantly increase the level of effort and expense of revalidating
the software after a change is made.
FEAN A AR B P 75 R REIR IR 221 FH AR BE AR R L A2 R PR 67 i RS 6 72 it o A 452 A) 52
RIE . BRARTER, SR 3 0B B¢ R AT S5 M B AT 20 58 B BSOS R 1) 7 0 75 B 56IE
ke 7 BT S8 REIOAIE — A B) 2R B R T JR S AT SR IE A2 5 A SO D s AP RS . i,
IS D) e 7 AP R e AT S S AR R, i R EA D Bl fE #EAT B DA A . %
AR TERE], FTRE ™ A0 — AR B S BT 2 A AR B A AR IR R A B
In addition to software verification and validation tasks that are part of the standard software development
process, the following additional maintenance tasks should be addressed:

B BRI RN TAEAN, HRARUHE R IT A R (LR 73, B AR L 55 th N B -

Software Validation Plan Revision - For software that was previously validated, the existing software
validation plan should be revised to support the validation of the revised software. If no previous software

validation plan exists, such a plan should be established to support the validation of the revised software.
BAERRAETHRMB T -0 TS AT ki (o, XA B AT SE v R A AE T DL SCHRFIZAME LT I 3t
Bk A ST VRS E TR, R S — N X TR LSRR MBI IR B E

Anomaly Evaluation — Software organizations frequently maintain documentation, such as software
problem reports that describe software anomalies discovered and the specific corrective action taken to fix
each anomaly. Too often, however, mistakes are repeated because software developers do not take the next
step to determine the root causes of problems and make the process and procedural changes needed to avoid
recurrence of the problem. Software anomalies should be evaluated in terms of their severity and their effects
on system operation and safety, but they should also be treated as symptoms of process deficiencies in the
quality system. A root cause analysis of anomalies can identify specific quality system deficiencies. Where
trends are identified (e.g., recurrence of similar software anomalies), appropriate corrective and preventive
actions must be implemented and documented to avoid further recurrence of similar quality problems. (See
21 CFR 820.100.)

T 0 VA - AL 238 4R 4P SO TS, Anat i A S 5 R I R A) R o AN 5 1 S W R AR
WRATEN . SR, AAERIEE R R, BRI RN T8 R BN AN 22 R DL A2 il AR YA %o
i S G P ORI R (RS AR AR AT AR B o B S T R VA AR RS AT TR P B A S R G
VERIZ2 A5, H 2 EATTH AR 0T B AR e i R R R (R A o — AN S PR AR AL 20 AT e 4 R
TR RGOk . BTN (B R ER B AR D NMRAT IR 538 2 1 CAPALL
B G A A 3P SRF FE O B (21 CFR 820.100.)

Problem Identification and Resolution Tracking - All problems discovered during maintenance of the
software should be documented. The resolution of each problem should be tracked to ensure it is fixed, for
historical reference, and for trending.

N5 R 5) FIAPE R R B - 7 AP 447 391 1) 5 300) 1) R A 10 53¢ o R 1) R PO A R N2 R B, EAORAIE A TS
S E S A IR E LR

Proposed Change Assessment - All proposed modifications, enhancements, or additions should be assessed
to determine the effect each change would have on the system. This information should determine the extent
to which verification and/or validation tasks need to be iterated.

BRI TEE-PrA @ W B R m s b R Al DL E X R G AR RN AR B . IXAME
ISYRTE Al IR TR ING R N =R ap L2

Task Iteration - For approved software changes, all necessary verification and validation tasks should be
performed to ensure that planned changes are implemented correctly, all documentation is complete and up
to date, and no unacceptable changes have occurred in software performance.
FEFEARNT THAER AT, AT B A D AT S e RSN AR, DL R IEF AT LRI AR5, P
A SR SE R ISR, WA AN AT SRS) AR B H IR AT AT

Documentation Updating — Documentation should be carefully reviewed to determine which documents
have been impacted by a change. All approved documents (e.g., specifications, test procedures, user manuals,
etc.) that have been affected should be updated in accordance with configuration management procedures.
Specifications should be updated before any maintenance and software changes are made.
SCAHEEE - AT GHVE B A DARA E 52 A8 SRS (R S o BT S5 M AL A) SO (Al Bt s 0l
Fov R TFEEED) 35 44 HEC B A8 BEAR e R AT BT o FE AR ART AT AT ART 24 A0 00422 B i N BE BT b oA

SECTION 6. VALIDATION OF AUTOMATED PROCESS EQUIPMENT
AND QUALITY SYSTEM SOFTWARE H3{LiI BRI &R ERSK
s

The Quality System regulation requires that “when computers or automated data processing systems are used
as part of production or the quality system, the [device] manufacturer shall validate computer software for its
intended use according to an established protocol.” (See 21 CFR §820.70(i)). This has been a regulatory
requirement of FDA’s medical device Good Manufacturing Practice (GMP) regulations since 1978.

R RGEIER TR B B0 8 s A HE AR G A AR B R R G AL RGER o I, AR R
R AL I BIRAE T ENUR AU A E . (W21 CFR 820.70())) « X2 H19784- LIk, FDA
HYBETT A bk R4 A P R iR R e R

In addition to the above validation requirement, computer systems that implement part of a device
manufacturer’s production processes or quality system (or that are used to create and maintain records
required by any other FDA regulation) are subject to the Electronic Records; Electronic Signatures regulation.
(See 21 CFR Part 11.) This regulation establishes additional security, data integrity, and validation
requirements when records are created or maintained electronically. These additional Part 11 requirements
should be carefully considered and included in system requirements and software requirements for any
automated record "keeping systems. System validation and software validation should demonstrate that all
Part 11 requirements have been met.

bR 7 _EIRIGUEER, SEIL AR R B A LR EUR E R G T RN RS (B IR FDA AR
BRSNS IE S T AL RS MR Tl (R840 A0 (WL 21 CFR Part 11.);
XAMEIE ST 7 AEQ) B4R’ T IC I B 22 4. Bl S8 BEE LRAIE T SR . TR B 3k i
SRARFF R GE, X EEEAM S L1 EER NAFAT A0 7% F8 T o5 AE R AL 7 RV 5 K o RGEIRUEATER
ARI0E MR B U6 2 BT B S8 L8R 0 20K

Computers and automated equipment are used extensively throughout all aspects of medical device design,
laboratory testing and analysis, product inspection and acceptance, production and process control,
environmental controls, packaging, labeling, traceability, document control, complaint management, and
many other aspects of the quality system. Increasingly, automated plant floor operations can involve
extensive use of embedded systems in:

THENUR A BN R 2 SR AE LR A 7T, W7 dsbkis it SLie AT IR A4 #r . 7= dn ke 2 A
oW, AErE A R . IREEEES] . BRE. RS FTEBWIME. ORI, RS EARE RS
fhrTH . B3I EAENE AT EA ROk 2 M & T RN RGETE AT T 12 N -

programmable logic controllers; 7] & FE1% 482 il 5%

digital function controllers; %4 Th g2 H 45

statistical process control; 4t it-id FE 4z i

supervisory control and data acquisition; ¥ &2 il Al B K 5=

robotics; #las A

human-machine interfaces; AAL# 1

input/output devices; and i N\ /% 25 8

computer operating systems. it HLIRVE R4t

Software tools are frequently used to design, build, and test the software that goes into an automated medical
device. Many other commercial software applications, such as word processors, spreadsheets, databases, and
flowcharting software are used to implement the quality system. All of these applications are subject to the
requirement for software validation, but the validation approach used for each application can vary widely.

B T HGEE R G A A I BT 2R A o AR VR 22 B b AR B AR P T R,
AL R BRSO AR B S . T XN R 3 R AT IR, HAEEN AT
FESIE T 5] RE 2 A IR RAN A 6

Whether production or quality system software is developed in-house by the device manufacturer, developed
by a contractor, or purchased off-the-shelf, it should be developed using the basic principles outlined
elsewhere in this guidance. The device manufacturer has latitude and flexibility in defining how validation of
that software will be accomplished, but validation should be a key consideration in deciding how and by
whom the software will be developed or from whom it will be purchased. The software developer defines a
life cycle model. Validation is typically supported by:

ANE A BT B R GRS s AR T A EROT R, B R R R B T S R AT R, BN
REASTiE S IR B AR SR U BEAT o A0l 7 R A 0 8 A SR AN] 58 B A7 AR B BRI R TEE, (H2 4K
PRI UE R — S S8 B 25 8 B3 AL 2 B an] s th eI A, BRI S o A 0T A e — A

i JE R . B0

verifications of the outputs from each stage of that software development life cycle; and

checking for proper operation of the finished software in the device manufacturer’s intended use
environment.
A% WA I A i S KRR e B i s RIRS: 7 S ot PR A 2 B AR 7 v U A SR v i IR s
7e

6.1. HOW MUCH VALIDATION EVIDENCE IS NEEDED? &E L /DISIEAKIE
The level of validation effort should be commensurate with the risk posed by the automated operation. In
addition to risk other factors, such as the complexity of the process software and the degree to which the
device manufacturer is dependent upon that automated process to produce a safe and effective device,
determine the nature and extent of testing needed as part of the validation effort. Documented requirements
and risk analysis of the automated process help to define the scope of the evidence needed to show that the
software is validated for its intended use. For example, an automated milling machine may require very little
testing if the device manufacturer can show that the output of the operation is subsequently fully verified
against the specification before release. On the other hand, extensive testing may be needed for:
WAEZ AR N S B BEAT 5 B R B AR . BR 7 HAR KGRI 3R, dndb PRI i =2 28 PR A s e
PERIX A AN A RS B SRR T OB IR B, Wi g T SRE T e I B 1 s A AR
J& o BB A 5 A8 SO A A SRAMXURS: 70 A BT B Sl s SR A A4S FH RS Y B
H 2N BEPK AT RE 75 ZE AN IR, an SREES AR AE 7 P BEAIE W LE T8 T BT 32 AT 4 H 45 2R AT B S B SE AT S b
o S—J7m, KRERNHA RS FHEN T

a plant-wide electronic record and electronic signature system;

— AT R R ILRE MBS R

an automated controller for a sterilization cycle; or

KB I B s a5

automated test equipment used for inspection and acceptance of finished circuit boards in a
life-sustaining / life-supporting device.
P T30 S0 — A2 iy SCHRp A3 Al A FH F RSt e B A) B S0 1 4%
Numerous commercial software applications may be used as part of the quality system (e.g., a spreadsheet or
statistical package used for quality system calculations, a graphics package used for trend analysis, or a
commercial database used for recording device history records or for complaint management). The extent of
validation evidence needed for such software depends on the device manufacturer’s documented intended use
of that software. For example, a device manufacturer who chooses not to use all the vendor-supplied
capabilities of the software only needs to validate those functions that will be used and for which the device
manufacturer is dependent upon the software results as part of production or the quality system. However,
high risk applications should not be running in the same operating environment with non-validated software
functions, even if those software functions are not used. Risk mitigation techniques such as memory
partitioning or other approaches to resource protection may need to be considered when high risk
applications and lower risk applications are to be used in the same operating environment. When software is
upgraded or any changes are made to the software, the device manufacturer should consider how those
changes may impact the “used portions” of the software and must reconfirm the validation of those portions
of the software that are used. (See 21 CFR 820.70(i).)
X2 WP LR A N R P BRVF AT E B R G i) — 862> (Bilan , AT RUE RS — A H 7 R B
giitf, HT&EB DI —NEIERATE, SRR LI R B R E B — MRS B
X LG 5 AR S0 TR 5 YO [B e T e A D s R U g . e, — AN s A R R 4R
P BT A BE 0 BORSIRAE P 0 DU 7R 90 R ZA T I Th g, A 7 v O T 26 7= BB B R 4
VRS R . SRTIT, e AU B PR 7 AN R AE R 2 36k R D RE IR AN AH R R E A B Rz AT, R
SEER AT T REFFARAEH o 2 e XU 2 A B AR XURS: B2 F RS P) T IR —3g AT A5, 7T e e 25 18 XU
B, W2 7> RIEHAR TR ORI I J7 1k . 2 75 2L SR Bl S AT AR SIS, AR 7 v N5

JEIX LEAR T AT BE s R M AR AR) AT AR 4>, R AU e SR UE. ()L 21 CFR 820.70(i).)

6.2. DEFINED USER REQUIREMENTS & X F &K
A very important key to software validation is a documented user requirements specification that defines:
BAFIAE B — AR BT s — A SUHME I P R Ry, g T

the “intended use” of the software or automated equipment; and

BAF S E SRR) T E” o A

the extent to which the device manufacturer is dependent upon that software or equipment for
production of a quality medical device.
A P R R B B AR AN A R BT A A A AR S
The device manufacturer (user) needs to define the expected operating environment including any required
hardware and software configurations, software versions, utilities, etc. The user also needs to:
et) 8 XTI IT I, A ZOR R RC & . R RAS . SEHIRE P45 .
FH P 75

document requirements for system performance, quality, error handling, startup, shutdown, security,
etc.;

WRRGMERE. E. #RAHE. B3l Kl ZeREFER R K,

identify any safety related functions or features, such as sensors, alarms, interlocks, logical processing
steps, or command sequences; and

WRMEfT AR ThRe s Re, WR s . Bhds . Bl WAELEDE, 8484 M

define objective criteria for determining acceptable performance.
5E S TE B M At BE B 2 AR o
The validation must be conducted in accordance with a documented protocol, and the validation results must
also be documented. (See 21 CFR 820.70(i).) Test cases should be documented that will exercise the system
to challenge its performance against the pre-determined criteria, especially for its most critical parameters.
Test cases should address error and alarm conditions, startup, shutdown, all applicable user functions and
operator controls, potential operator errors, maximum and minimum ranges of allowed values, and stress
conditions applicable to the intended use of the equipment. The test cases should be executed and the results
should be recorded and evaluated to determine whether the results support a conclusion that the software is
validated for its intended use.
BRI I — N SO B 7 2 30AT, JF B3RS R b Aiad sk (W 21 CFR 820.70(i).). il H 4
IR, T RGAETEHEMIRET, ARG AR TR, FldREAR T HRENZE. Wl
G NZ A B R A E RGO, B3, KM, A& R ThREANERAE 1), T AE A R,
BV N, LUROR B4 BUS A ESE A S TP IRAS - AT L DU A 5 A TR 4 45
R, DU E 85 A2 15 SCRFIXAE— G50 -0 2 2T FLT0UH FH 1T 4R 4IE 1)
A device manufacturer may conduct a validation using their own personnel or may depend on a third party
such as the equipment/software vendor or a consultant. In any case, the device manufacturer retains the
ultimate responsibility for ensuring that the production and quality system software:
g R B AN BT IR AR, B SR =0 AT, A A A BN R BN B . AN
BRI AT 2, A R N R A DA, DA DR AR A R R G

is validated according to a written procedure for the particular intended use; and

will perform as intended in the chosen application.
F IR — AN T R T & 1 B TR AT IRE s HOR AR PR BR (0 B FH AR 7 R AT
The device manufacturer should have documentation including:
A P T N A AN SO

defined user requirements; #ff 3 11 FH P 75 3K ;

validation protocol used; 15 F f56IE 7 %

acceptance criteria; I8 UCFRAE;

test cases and results; and 3R BRI SE B, M

a validation summary that objectively confirms that the software is validated for its intended use.
BRI 2 AT I T I T A R AT B) B IE A

6.3. VALIDATION OF OFF-THE-SHELF SOFTWARE AND AUTOMATED EQUIPMENT f
B AEA E B i RAE

Most of the automated equipment and systems used by device manufacturers are supplied by third-party
vendors and are purchased off-the-shelf (OTS). The device manufacturer is responsible for ensuring that the
product development methodologies used by the OTS software developer are appropriate and sufficient for
the device manufacturer’s intended use of that OTS software. For OTS software and equipment, the device
manufacturer may or may not have access to the vendor’s software validation documentation. If the vendor
can provide information about their system requirements, software requirements, validation process, and the
results of their validation, the medical device manufacturer can use that information as a beginning point for
their required validation documentation. The vendor’s life cycle documentation, such as testing protocols and
results, source code, design specification, and requirements specification, can be useful in establishing that
the software has been validated. However, such documentation is frequently not available from commercial
equipment vendors, or the vendor may refuse to share their proprietary information.

A BRAE 7 A) 2 8 B Sh AT R R G R AR =7 SR R AR Y, T HLE ISR (OTS). #
BB T A DT AR AR OROTSER A8 FH B 7 it T R T o0 T A 7 1 IO T SER AL 1 FUIA FH 3k & 1 4 1)
MR o X T OTSEAF A #%, A bRAE 7™ 1o P e B AN AT BE 3 i 303 AR 2 s 3R A B SO
RIXAEN AT DA R R G T K AR R Wk R K OX IR 45 R 5 B0 Rk, BRyT 28miE
PR AL S B OB AR BT FR 3R E SO B — N AL AR PRI AR A A SO, aniila Ty SRR R
RS, W ARER TR ARE, PIE BT € SRR R . SR, XSO IR AN RE 8 S s A AR
PETSRAT, B U R AT R AR A SR A ARAT) B A R

Where possible and depending upon the device risk involved, the device manufacturer should consider
auditing the vendor’s design and development methodologies used in the construction of the OTS software
and should assess the development and validation documentation generated for the OTS software. Such
audits can be conducted by the device manufacturer or by a qualified third party. The audit should
demonstrate that the vendor’s procedures for and results of the verification and validation activities
performed the OTS software are appropriate and sufficient for the safety and effectiveness requirements of
the medical device to be produced using that software.

WNATTTRE, JFRRIE A AL RS, WA 7 7 B2 2% R8 B T 1A B O TSR AR I B L R) se vk AT
Jiik, IRLPPAXASOTSHAF ™ A T A ABGAE S o XL 8 T B s AR = T B — N A R S =
AT o B TR B P AR A AT O TSER A 9 1 A A A V% B) 45 R 2 & A A se 70 1), A2 BAORAIE
Al I AN A 2R 7 B B T e) 22 4 A A R

Some vendors who are not accustomed to operating in a regulated environment may not have a documented
life cycle process that can support the device manufacturer’s validation requirement. Other vendors may not
permit an audit. Where necessary validation information is not available from the vendor, the device
manufacturer will need to perform sufficient system level “black box™ testing to establish that the software
meets their “user needs and intended uses.” For many applications black box testing alone is not sufficient.
Depending upon the risk of the device produced, the role of the OTS software in the process, the ability to
audit the vendor, and the sufficiency of vendor-supplied information, the use of OTS software or equipment
may or may not be appropriate, especially if there are suitable alternatives available. The device
manufacturer should also consider the implications (if any) for continued maintenance and support of the
OTS software should the vendor terminate their support.

— BN SBAE — AN E B R I BN R AT RE VAT — A U E AR A R IR, LSRR A
P IGAE 7GR o JLAM LR B T REAS R VF B Th o DA IR, RN PRI ICIES BEIEATTH, a8k 7= i
B EEPITRAMREL “BEWR” , KEWHRIRAS “F P EERTUNARN” « T
BFHFRR, BEAT AR AT 7 AR AR IO B OXU:, OTSEA L FE A 10, B LR A
RE IR P45 B 78 70 1, OTSHCIF BSR4 FH AT B2 4 i B AT BE 2 AN 1), e R 2R A

&) R o A IR R R SRy, AR A R RS RE N OT SE A BEAT RREE I 4RI RIS HF O
BRI .

For some off-the-shelf software development tools, such as software compilers, linkers, editors, and
operating systems, exhaustive black-box testing by the device manufacturer may be impractical. Without
such testing — a key element of the validation effort — it may not be possible to validate these software tools.
However, their proper operation may be satisfactorily inferred by other means. For example, compilers are
frequently certified by independent third-party testing, and commercial software products may have “bug
lists”, system requirements and other operational information available from the vendor that can be compared
to the device manufacturer’s intended use to help focus the “black-box” testing effort. Off-the-shelf operating
systems need not be validated as a separate program. However, system-level validation testing of the
application software should address all the operating system services used, including maximum loading
conditions, file operations, handling of system error conditions, and memory constraints that may be
applicable to the intended use of the application program.

TR BT R TR, IS . IERE . MR RS, S R AT R R
FAMREVF AL . A X P -0 0E 22) — > L E T R -V A AT RS IR S TR . SR,
A H At Ty R AERTE A TRIE AT . B, e oL B s =05 R IER], Rk
PR TTREA BRSO SRI) R T R A IANIZATE R, XL RGBT R S
P U R AR B, U B T o0 XA B A A 220 O BRI R T EAE N — Dl i 7
BEATIRAE . SR, IXAS SRR B 1R 3R G g ik k82 1 B i 8 F B E R IR Ss, iRt
BT, SCHHRERTS, RGERTEOLIIACIE, DUSCRTREIE FH T 5 F R Fe 16 T30 FH 328 10 A A7 R A1
For more detailed information, see the production and process software references in Appendix A. 5 £ 1£41
55, WA AR S %

APPENDIX A - REFERENCES
bt A-51 A

Food and Drug Administration References
Design Control Guidance for Medical Device Manufacturers, Center for Devices and Radiological Health,
Food and Drug Administration, March 1997.
Do It by Design, An Introduction to Human Factors in Medical Devices, Center for Devices and Radiological
Health, Food and Drug Administration, March 1997.
Electronic Records; Electronic Signatures Final Rule, 62 Federal Register 13430 (March 20, 1997).
Glossary of Computerized System and Software Development Terminology, Division of Field Investigations,
Office of Regional Operations, Office of Regulatory Affairs, Food and Drug Administration, August 1995.
Guidance for the Content of Pre-market Submissions for Software Contained in Medical Devices, Office of
Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration, May 1998.
Guidance for Industry, FDA Reviewers and Compliance on Off-the-Shelf Software Use in Medical Devices,
Office of Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration,
September 1999.
Guideline on General Principles of Process Validation, Center for Drugs and Biologics, & Center For
Devices and Radiological Health, Food and Drug Administration, May 1987.
Medical Devices; Current Good Manufacturing Practice (CGMP) Final Rule; Quality System Regulation ,
61 Federal Register 52602 (October 7, 1996).
Reviewer Guidance for a Pre-Market Notification Submission for Blood Establishment Computer Software,
Center for Biologics Evaluation and Research, Food and Drug Administration, January 1997
Student Manual 1, Course INV545, Computer System Validation, Division of Human Resource Development,
Office of Regulatory Affairs, Food and Drug Administration, 1997.
Technical Report, Software Development Activities, Division of Field Investigations, Office of Regional
Operations, Office of Regulatory Affairs, Food and Drug Administration, July 1987.

Other Government References

W. Richards Adrion, Martha A. Branstad, John C. Cherniavsky. NBS Special Publication 500-75, Validation,
Verification, and Testing of Computer Software, Center for Programming Science and Technology, Institute
for Computer Sciences and Technology, National Bureau of Standards, U.S. Department of Commerce,
February 1981.

Martha A. Branstad, John C Cherniavsky, W. Richards Adrion, NBS Special Publication 500-56,
Validation, Verification, and Testing for the Individual Programmer, Center for Programming Science and
Technology, Institute for Computer Sciences and Technology, National Bureau of Standards, U.S.
Department of Commerce, February 1980.

J.L. Bryant, N.P. Wilburn, Handbook of Software Quality Assurance Techniques Applicable to the Nuclear
Industry, NUREG/CR-4640, U.S. Nuclear Regulatory Commission, 1987.

H. Hecht, et.al., Verification and Validation Guidelines for High Integrity Systems. NUREG/CR6293.
Prepared for U.S. Nuclear Regulatory Commission, 1995.

H. Hecht, et.al., Review Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems,
Final Report. NUREG/CR-6463. Prepared for U.S. Nuclear Regulatory Commission, 1996.

J.D. Lawrence, W.L. Persons, Survey of Industry Methods for Producing Highly Reliable Software,
NUREG/CR-6278, U.S. Nuclear Regulatory Commission, 1994.

J.D. Lawrence, G.G. Preckshot, Design Factors for Safety-Critical Software, NUREG/CR-6294,

U.S. Nuclear Regulatory Commission, 1994.

Patricia B. Powell, Editor. NBS Special Publication 500-98, Planning for Software Validation, Verification,
and Testing, Center for Programming Science and Technology, Institute for Computer Sciences and
Technology, National Bureau of Standards, U.S. Department of Commerce, November 1982.

Patricia B. Powell, Editor. NBS Special Publication 500-93, Software Validation, Verification, and Testing
Technique and Tool Reference Guide, Center for Programming Science and Technology, Institute for
Computer Sciences and Technology, National Bureau of Standards, U.S. Department of Commerce,

http://www.fda.gov/cdrh/comp/designgd.html
http://www.fda.gov/cdrh/comp/designgd.html
http://www.fda.gov/cdrh/humfac/doit.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/1252.html
http://www.fda.gov/cdrh/ode/1252.html
http://www.fda.gov/cdrh/ode/425.pdf
http://www.fda.gov/cber/gdlns/swreview.txt
http://www.fda.gov/cber/gdlns/swreview.txt

September 1982.

Delores R. Wallace, Roger U. Fujii, NIST Special Publication 500-165, Software Verification and Validation:
Its Role in Computer Assurance and Its Relationship with Software Project Management Standards, National
Computer Systems Laboratory, National Institute of Standards and Technology, U.S. Department of
Commerce, September 1995.

Delores R. Wallace, Laura M. Ippolito, D. Richard Kuhn, NIST Special Publication 500-204, High Integrity
Software, Standards and Guidelines, Computer Systems Laboratory, National Institute of Standards and
Technology, U.S. Department of Commerce, September 1992.

Delores R. Wallace, et.al. NIST Special Publication 500-234, Reference Information for the Software
Verification and Validation Process. Computer Systems Laboratory, National Institute of Standards and
Technology, U.S. Department of Commerce, March 1996.

Delores R. Wallace, Editor. NIST Special Publication 500-235, Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric. Computer Systems Laboratory, National Institute of Standards and
Technology, U.S. Department of Commerce, August 1996.

International and National Consensus Standards

ANSI / ANS-10.4-1987, Guidelines for the Verification and Validation of Scientific and Engineering
Computer Programs for the Nuclear Industry, American National Standards Institute, 1987.

ANSI / ASQC Standard D1160-1995, Formal Design Reviews, American Society for Quality Control, 1995.
ANSI /UL 1998:1998, Standard for Safety for Software in Programmable Components, Underwriters
Laboratories, Inc., 1998.

AS 3563.1-1991, Software Quality Management System, Part 1: Requirements. Published by Standards
Australia [Standards Association of Australia], 1 The Crescent, Homebush, NSW 2140.

AS 3563.2-1991, Software Quality Management System, Part 2: Implementation Guide. Published by
Standards Australia [Standards Association of Australia], 1 The Crescent, Homebush, NSW 2140.

IEC 60601-1-4:1996, Medical electrical equipment, Part 1: General requirements for safety, 4. Collateral
Standard: Programmable electrical medical systems. International Electrotechnical Commission, 1996.
IEC 61506:1997, Industrial process measurement and control — Documentation of application software.
International Electrotechnical Commission, 1997.

IEC 61508:1998, Functional safety of electrical/electronic/programmable electronic safety-related systems.
International Electrotechnical Commission, 1998.

IEEE Std 1012-1986, Software Verification and Validation Plans, Institute for Electrical and Electronics
Engineers, 1986.

IEEE Standards Collection, Software Engineering, Institute of Electrical and Electronics Engineers, Inc.,
1994. ISBN 1-55937-442-X.

ISO 8402:1994, Quality management and quality assurance — Vocabulary. International Organization for
Standardization, 1994.

ISO 9000-3:1997, Quality management and quality assurance standards - Part 3: Guidelines for the
application of 1SO 9001:1994 to the development, supply, installation and maintenance of computer software.
International Organization for Standardization, 1997.

ISO 9001:1994, Quality systems — Model for quality assurance in design, development, production,
installation, and servicing. International Organization for Standardization, 1994.

ISO 13485:1996, Quality systems — Medical devices — Particular requirements for the application of ISO
9001. International Organization for Standardization, 1996.

ISO/IEC 12119:1994, Information technology — Software packages — Quality requirements and testing, Joint
Technical Committee ISO/IEC JTC 1, International Organization for Standardization and International
Electrotechnical Commission, 1994.

ISO/IEC 12207:1995, Information technology — Software life cycle processes, Joint Technical Committee
ISO/IEC JTC 1, Subcommittee SC 7, International Organization for Standardization and International
Electrotechnical Commission, 1995.

ISO/IEC 14598:1999, Information technology — Software product evaluation, Joint Technical Committee
ISO/IEC JTC 1, Subcommittee SC 7, International Organization for Standardization and International
Electrotechnical Commission, 1999.

ISO 14971-1:1998, Medical Devices — Risk Management — Part 1: Application of Risk Analysis. International
Organization for Standardization, 1998.

Software Considerations in Airborne Systems and Equipment Certification. Special Committee 167 of RTCA.
RTCA Inc., Washington, D.C. Tel: 202-833-9339. Document No. RTCA/DO178B, December 1992.

Production Process Software References

The Application of the Principles of GLP to Computerized Systems, Environmental Monograph #116,
Organization for Economic Cooperation and Development (OECD), 1995.

George J. Grigonis, Jr., Edward J. Subak, Jr., and Michael Wyrick, “Validation Key Practices for Computer
Systems Used in Regulated Operations, ” Pharmaceutical Technology, June 1997.

Guide to Inspection of Computerized Systems in Drug Processing, Reference Materials and

Training Aids for Investigators, Division of Drug Quality Compliance, Associate Director for Compliance,
Office of Drugs, National Center for Drugs and Biologics, & Division of Field Investigations, Associate
Director for Field Support, Executive Director of Regional Operations, Food and Drug Administration,
February 1983.

Daniel P. Olivier, “Validating Process Software”, FDA Investigator Course: Medical Device Process
Validation, Food and Drug Administration.

GAMP Guide For Validation of Automated Systems in Pharmaceutical Manufacture,Version V3.0, Good
Automated Manufacturing Practice (GAMP) Forum, March 1998: Volume 1, Part 1: User Guide Part 2:
Supplier Guide Volume 2: Best Practice for User and Suppliers.

Technical Report No. 18, Validation of Computer-Related Systems. PDA Committee on Validation of
Computer-Related Systems. PDA Journal of Pharmaceutical Science and Technology, Volume 49, Number 1,
January-February 1995 Supplement.

Validation Compliance Annual 1995, International Validation Forum, Inc.

General Software Quality References

Boris Beizer, Black Box Testing, Techniques for Functional Testing of Software and Systems, John Wiley &
Sons, 1995. ISBN 0-471-12094-4.

Boris Beizer, Software System Testing and Quality Assurance, International Thomson Computer Press, 1996.
ISBN 1-85032-821-8.

Boris Beizer, Software Testing Techniques, Second Edition, Van Nostrand Reinhold, 1990. ISBN 0-
442-20672-0.

Richard Bender, Writing Testable Requirements, Version 1.0, Bender & Associates, Inc., Larkspur, CA
94777, 1996.

Frederick P. Brooks, Jr., The Mythical Man-Month, Essays on Software Engineering, Addison-Wesley
Longman, Anniversary Edition, 1995. ISBN 0-201-83595-9.

Silvana Castano, et.al., Database Security, ACM Press, Addison-Wesley Publishing Company, 1995. ISBN
0-201-59375-0.

Computerized Data Systems for Nonclinical Safety Assessment, Current Concepts and Quality Assurance,
Drug Information Association, Maple Glen, PA, September 1988.

M. S. Deutsch, Software Verification and Validation, Realistic Project Approaches, Prentice Hall, 1982.
Robert H. Dunn and Richard S. Ullman, TQM for Computer Software, Second Edition, McGraw-Hill, Inc.,
1994. ISBN 0-07-018314-7.

Elfriede Dustin, Jeff Rashka, and John Paul, Automated Software Testing — Introduction, Management and
Performance, Addison Wesley Longman, Inc., 1999. ISBN 0-201-43287-0.

Robert G. Ebenau and Susan H. Strauss, Software Inspection Process, McGraw-Hill, 1994. ISBN
0-07-062166-7.

Richard E. Fairley, Software Engineering Concepts, McGraw-Hill Publishing Company, 1985. ISBN
0-07-019902-7.

Michael A. Friedman and Jeffrey M. Voas, Software Assessment - Reliability, Safety, Testability,
Wiley-Interscience, John Wiley & Sons Inc., 1995. ISBN 0-471-01009-X.

Tom Gilb, Dorothy Graham, Software Inspection, Addison-Wesley Publishing Company, 1993. ISBN
0-201-63181-4.

Robert B. Grady, Practical Software Metrics for Project Management and Process Improvement, PTR
Prentice-Hall Inc., 1992. ISBN 0-13-720384-5.

Les Hatton, Safer C: Developing Software for High-integrity and Safety-critical Systems, McGraw-Hill Book
Company, 1994. ISBN 0-07-707640-0.

Janis V. Halvorsen, A Software Requirements Specification Document Model for the Medical Device
Industry, Proceedings IEEE SOUTHEASTCON '93, Banking on Technology, April 4th -7th, 1993, Charlotte,
North Carolina.

Debra S. Herrmann, Software Safety and Reliability: Techniques, Approaches and Standards of Key
Industrial Sectors, IEEE Computer Society, 1999. ISBN 0-7695-0299-7.

Bill Hetzel, The Complete Guide to Software Testing, Second Edition, A Wiley-QED Publication, John
Wiley & Sons, Inc., 1988. ISBN 0-471-56567-9.

Watts S. Humphrey, A Discipline for Software Engineering. Addison-Wesley Longman, 1995. ISBN
0-201-54610-8.

Watts S. Humphrey, Managing the Software Process, Addison-Wesley Publishing Company, 1989. ISBN
0-201-18095-2.

Capers Jones, Software Quality, Analysis and Guidelines for Success, International Thomson Computer Press,
1997. ISBN 1-85032-867-6.

J.M. Juran, Frank M. Gryna, Quality Planning and Analysis, Third Edition, , McGraw-Hill, 1993.

ISBN 0-07-033183-9.Stephen H. Kan, Metrics and Models in Software Quality Engineering,
Addison-Wesley PublishingCompany, 1995. ISBN 0-201-63339-6.

Cem Kaner, Jack Falk, Hung Quoc Nguyen, Testing Computer Software, Second Edition, Vsn

Nostrand Reinhold, 1993. ISBN 0-442-01361-2.Craig Kaplan, Ralph Clark, Victor Tang, Secrets of Software
Quality, 40 Innovations from IBM,McGraw-Hill, 1995. ISBN 0-07-911795-3.

Edward Kit, Software Testing in the Real World, Addison-Wesley Longman, 1995. ISBN 0-201
87756-2.Alan Kusinitz, “Software Validation ", Current Issues in Medical Device Quality
Systems,Association for the Advancement of Medical Instrumentation, 1997. ISBN 1-57020-075-0.

Nancy G. Leveson, Safeware, System Safety and Computers, Addison-Wesley Publishing

Company, 1995. ISBN 0-201-11972-2.Michael R. Lyu, Editor, Handbook of Software Reliability
Engineering, IEEE Computer SocietyPress, McGraw-Hill, 1996. ISBN 0-07-039400-8.

Steven R. Mallory, Software Development and Quality Assurance for the HealthcareManufacturing
Industries, Interpharm Press,Inc., 1994. ISBN 0-935184-58-9.Brian Marick, The Craft of Software Testing,
Prentice Hall PTR, 1995. ISBN 0-13-177411-5.

Steve McConnell, Rapid Development, Microsoft Press, 1996. ISBN 1-55615-900-5.Glenford J. Myers, The
Art of Software Testing, John Wiley & Sons, 1979.1SBN 0-471-04328-1.

Peter G. Neumann, Computer Related Risks, ACM Press/Addison-Wesley Publishing Co., 1995.

ISBN 0-201-55805-X.Daniel Olivier, Conducting Software Audits, Auditing Software for Conformance to
FDARequirements, Computer Application Specialists, San Diego, CA, 1994.

William Perry, Effective Methods for Software Testing, John Wiley & Sons, Inc. 1995. ISBN 0471-06097-6.
William E. Perry, Randall W. Rice, Surviving the Top Ten Challenges of Software Testing, Dorset House
Publishing, 1997. ISBN 0-932633-38-2.

Roger S. Pressman, Software Engineering, A Practitioner's Approach, Third Edition, McGraw-Hill Inc.,
1992. ISBN 0-07-050814-3.

Roger S. Pressman, A Manager’s Guide to Software Engineering, McGraw-Hill Inc., 1993 ISBN
0-07-050820-8.

A. P. Sage, J. D. Palmer, Software Systems Engineering, John Wiley & Sons, 1990.

Joc Sanders, Eugene Curran, Software Quality, Addison-Wesley Publishing Co., 1994. ISBN 0-
201-63198-9.Ken Shumate, Marilyn Keller, Software Specification and Design, A Disciplined Approach for
Real-Time Systems, John Wiley & Sons, 1992. ISBN 0-471-53296-7.

Dennis D. Smith, Designing Maintainable Software, Springer-Verlag, 1999.ISBN 0-387-98783-5.lan
Sommerville, Software Engineering, Third Edition, Addison Wesley Publishing Co., 1989. ISBN
0-201-17568-1.

Karl E. Wiegers, Creating a Software Engineering Culture, Dorset House Publishing, 1996. ISBN
0-932633-33-1. Karl E. Wiegers, Software Inspection, Improving Quality with Software Inspections,
Software

Development, April 1995, pages 55-64.Karl E. Wiegers, Software Requirements, Microsoft Press, 1999.
ISBN 0-7356-0631-5.

APPENDIX B - DEVELOPMENT TEAM

Center for Devices and Radiological Health

Office of Compliance Stewart Crumpler

Office of Device Evaluation James Cheng, Donna-Bea Tillman
Office of Health and Industry Programs Bryan Benesch, Dick Sawyer
Office of Science and Technology John Murray

Office of Surveillance and Biometrics Howard Press

Center for Drug Evaluation and Research Office of Medical Policy Charles Snipes
Center for Biologics Evaluation and Research Office of Compliance and Biologics Quality Alice Godziemski
Office of Reqgulatory Affairs Office of Regional Operations David Bergeson, Joan Loreng

